
EIR

Arnor Sigurdsson

Apr 25, 2024

CONTENTS

1 Installation 3
1.1 Installing EIR via pip . 3
1.2 Installing EIR via Container Engine . 3

2 Documentation 5
2.1 Supervised Learning . 5
2.2 Sequence Generation . 102
2.3 Array Generation . 135
2.4 Pretraining . 154
2.5 Customizing EIR . 170
2.6 API . 178
2.7 License . 413
2.8 Acknowledgements . 422

Index 425

i

ii

EIR

EIR is a framework for supervised modelling, sequence generation and array generation on genotype, tabular, sequence,
image, array, and binary input data. It is designed to provide a high-level, yet modular API that reduces the amount of
boilerplate code and pre-processing required to train a model.

Warning: This project is in alpha phase. Expect backwards incompatible changes and API changes.

CONTENTS 1

EIR

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Installing EIR via pip

$ pip install eir-dl

Important: The latest version of EIR supports Python 3.11. Using an older version of Python will install an outdated
version of EIR, which is likely to be incompatible with the current documentation and may contain bugs. Please make
sure that you are installing EIR in a Python 3.11 environment.

1.2 Installing EIR via Container Engine

Here’s an example with Docker:

$ docker build -t eir:latest https://raw.githubusercontent.com/arnor-sigurdsson/EIR/
→˓master/Dockerfile
$ docker run -d --name eir_container eir:latest
$ docker exec -it eir_container bash

3

https://www.python.org/downloads/

EIR

4 Chapter 1. Installation

CHAPTER

TWO

DOCUMENTATION

To get started, please read 01 – Genotype Tutorial: Ancestry Prediction.

2.1 Supervised Learning

2.1.1 01 – Genotype Tutorial: Ancestry Prediction

A - Setup

In this tutorial, we will be using genotype data to train deep learning models for ancestry prediction.

Note: This tutorial goes into some detail about how EIR works, and how to use it. If you are more interested in quickly
training the deep learning models for genomic prediction, the EIR-auto-GP project might be of use to you.

To start, please download processed sample data (or process your own .bed, .bim, .fam files with e.g. plink pipelines).
The sample data we are using here for predicting ancestry is the public Human Origins dataset, but the same approach
can just as well be used for e.g. disease predictions in other cohorts (for example the UK Biobank).

Examining the sample data, we can see the following structure:

processed_sample_data
arrays # Genotype data as NumPy arrays
data_final_gen.bim # Variant information file accompanying the genotype␣

→˓arrays
human_origins_labels.csv # Contains the target labels (what we want to predict␣

→˓from the genotype data)

Important: The label file ID column must be called “ID” (uppercase).

For this tutorial, we are going to use the data above to models to predict ancestry, of which there are 6 classes (Asia,
Eastern Asia, Europe, Latin America and the Caribbean, Middle East and Sub-Saharan Africa). Before diving into the
model training, we first have to configure our experiments.

To configure the experiments we want to run, we will use .yaml configurations. Running eirtrain --help, we can
see the configurations needed:

5

https://en.wikipedia.org/wiki/Genotyping
https://github.com/arnor-sigurdsson/EIR-auto-GP
https://drive.google.com/file/d/1MELauhv7zFwxM8nonnj3iu_SmS69MuNi
https://github.com/arnor-sigurdsson/plink_pipelines
https://www.nature.com/articles/nature13673
https://www.nature.com/articles/s41586-018-0579-z

EIR

usage: eirtrain [-h] --global_configs GLOBAL_CONFIGS [GLOBAL_CONFIGS ...]
[--input_configs [INPUT_CONFIGS ...]]
[--fusion_configs [FUSION_CONFIGS ...]] --output_configs
OUTPUT_CONFIGS [OUTPUT_CONFIGS ...]

options:
-h, --help show this help message and exit
--global_configs GLOBAL_CONFIGS [GLOBAL_CONFIGS ...]

Global .yaml configurations for the experiment.
--input_configs [INPUT_CONFIGS ...]

Input feature extraction .yaml configurations. Each
configuration represents one input.

--fusion_configs [FUSION_CONFIGS ...]
Fusion .yaml configurations.

--output_configs OUTPUT_CONFIGS [OUTPUT_CONFIGS ...]
Output .yaml configurations.

Above we can see that there are four types of configurations we can use: global, inputs, fusion and outputs. To see
more details about what should be in these configuration files, we can check the Configuration API reference.

Note: Instead of having to type out the configuration files below manually, you can download them from the docs/
tutorials/tutorial_files/01_basic_tutorial directory in the project repository

While the global configuration has a lot of options, the only one we really need to fill in now is output_folder and
evaluation interval (in batch iterations), so we have the following tutorial_01_globals.yaml file:

Listing 1: tutorial_01_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run
checkpoint_interval: 200
sample_interval: 200

We also need to tell the framework where to load inputs from, and some information about the input, for that we use
an input .yaml configuration called tutorial_01_inputs.yaml:

Listing 2: tutorial_01_input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/

→˓arrays
input_name: genotype
input_type: omics

input_type_info:
snp_file: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/data_

→˓final_gen.bim

model_config:
model_type: genome-local-net

Above we can see that the input needs 3 fields: input_info, input_type_info and model_config. The
input_info contains basic information about the input. The input_type_info contains information specific to
the input type (in this case omics). Finally, the model_config contains configuration for the model that should be

6 Chapter 2. Documentation

https://github.com/arnor-sigurdsson/EIR

EIR

trained with the input data. For more information about the configurations, e.g. which parameters are relevant for the
chosen models and what they do, head over to the Configuration API reference.

Finally, we need to specify what outputs to predict during training. For that we will use the tutorial_01_outputs.
yaml file with the following content:

Listing 3: tutorial_01_outputs.yaml

output_info:
output_name: ancestry_output
output_source: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/

→˓human_origins_labels.csv
output_type: tabular

output_type_info:
target_cat_columns:

- Origin

Note: You might notice that we have not written any fusion config so far. The fusion configuration controls how
different modalities (i.e. input data types, for example genotype and clinical data) are combined using a neural network.
While we indeed can configure the fusion, we will leave use the defaults for now. The default fusion model is a fully
connected neural network.

With all this, we should have our project directory looking something like this:

eir_tutorials/a_using_eir/01_basic_tutorial/
conf

large_scale_fusion.yaml
large_scale_globals.yaml
large_scale_input_gln.yaml
large_scale_input_tabular.yaml
large_scale_output.yaml
tutorial_01_globals.yaml
tutorial_01_input.yaml
tutorial_01_outputs.yaml
tutorial_01_outputs_unknown.yaml

data
processed_sample_data

arrays
data_final_gen.bim
human_origins_labels.csv

processed_sample_data.zip

B - Training

Training a GLN model

Now that we have our configurations set up, training is simply passing them to the framework, like so:

eirtrain \
--global_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_globals.
→˓yaml \

(continues on next page)

2.1. Supervised Learning 7

EIR

(continued from previous page)

--input_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_input.yaml \
--output_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_outputs.
→˓yaml

This will generate a folder in the current directory called eir_tutorials, and eir_tutorials/tutorial_runs/
a_using_eir/tutorial_01_run (note that the inner run name comes from the value in global_config we set
before) will contain the results from our experiment.

Tip: You might try running the command above again after it partially/completely finishes, and most likely you will
encounter a FileExistsError. This is to avoid accidentally overwriting previous experiments. When performing
another run, we will have to delete/rename the experiment, or change it in the configuration (see below).

Examining the directory, we see the following structure (some files have been excluded here for brevity):

eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/
configs
meta

eir_version.txt
model_info.txt
results

ancestry_output
Origin

samples
200

confusion_matrix.pdf
mc_pr_curve.pdf
mc_roc_curve.pdf
predictions.csv

400
confusion_matrix.pdf
mc_pr_curve.pdf
mc_roc_curve.pdf
predictions.csv

600
confusion_matrix.pdf
mc_pr_curve.pdf
mc_roc_curve.pdf
predictions.csv

training_curve_ACC.pdf
training_curve_AP-MACRO.pdf
training_curve_LOSS.pdf
training_curve_MCC.pdf
training_curve_ROC-AUC-MACRO.pdf

saved_models
test_predictions

known_outputs
ancestry_output

Origin
confusion_matrix.pdf
mc_pr_curve.pdf
mc_roc_curve.pdf

(continues on next page)

8 Chapter 2. Documentation

EIR

(continued from previous page)

predictions.csv
calculated_metrics.json

unknown_outputs
ancestry_output

Origin
predictions.csv

training_curve_LOSS-AVERAGE.pdf
training_curve_PERF-AVERAGE.pdf

In the results folder for a given output, the [200, 400, 600] folders contain our validation results according to our
sample_interval configuration in the global config.

We can examine how our model did with respect to accuracy (let’s assume our targets are fairly balanced in this case)
by checking the training_curve_ACC.png file:

Examining the actual predictions and how they matched the target labels, we can look at the confusion matrix in one
of the evaluation folders of results/Origin/samples. When I ran this, I got the following at iteration 600:

2.1. Supervised Learning 9

EIR

In the training curve above, we can see that our model barely got going before the run finished! Let’s try another
experiment. We can change the output_folder value in 01_basic_tutorial/tutorial_01_globals.yaml, but
the framework also supports rudimentary injection of values from the command line. Let’s try that, setting a new run
name, increasing the number of epochs and changing the learning rate:

eirtrain \
--global_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_globals.
→˓yaml \
--input_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_input.yaml \
--output_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_outputs.
→˓yaml \
--tutorial_01_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_
→˓run_lr-0.002_epochs-20 \
--tutorial_01_globals.lr=0.002 \
--tutorial_01_globals.n_epochs=20

Note: The injected values are according to the configuration filenames.

Looking at the training curve from that run, we can see we did a bit better:

10 Chapter 2. Documentation

EIR

We also notice that there is a gap between the training and evaluation performances, indicating that the model is starting
to overfit on the training data. There are a bunch of regularisation settings we could try, such as increasing dropout in
the input, fusion and output modules. Check the Configuration API reference for a full overview.

C - Predicting on external samples

Predicting on samples with known labels

To predict on external samples, we run eirpredict. As we can see when running eirpredict --help, it looks
quite similar to eirtrain:

usage: eirpredict [-h] [--global_configs [GLOBAL_CONFIGS ...]]
[--input_configs [INPUT_CONFIGS ...]]
[--fusion_configs [FUSION_CONFIGS ...]]
[--output_configs [OUTPUT_CONFIGS ...]] --model_path
MODEL_PATH [--evaluate] --output_folder OUTPUT_FOLDER
[--attribution_background_source {train,predict}]

options:
-h, --help show this help message and exit
--global_configs [GLOBAL_CONFIGS ...]

Global .yaml configurations for the experiment.
(continues on next page)

2.1. Supervised Learning 11

EIR

(continued from previous page)

--input_configs [INPUT_CONFIGS ...]
Input feature extraction .yaml configurations. Each
configuration represents one input.

--fusion_configs [FUSION_CONFIGS ...]
Fusion .yaml configurations.

--output_configs [OUTPUT_CONFIGS ...]
Output .yaml configurations.

--model_path MODEL_PATH
Path to model to use for predictions.

--evaluate
--output_folder OUTPUT_FOLDER

Where to save prediction results.
--attribution_background_source {train,predict}

For attribution analysis, whether to load backgrounds
from the data used for training or to use the current
data passed to the predict module.

Generally we do not change much of the configs when predicting, with the exception of the input configs (and
then mainly setting the input_source, i.e. where to load our samples to predict/test on from) and perhaps the
global config (e.g. we might not compute attributions during training, but compute them on our test set by activat-
ing compute_attributions in the global config when predicting). Specific to eirpredict, we have to choose
a saved model (--model_path), whether we want to evaluate the performance on the test set (--evaluate this
means that the respective labels must be present in the --output_configs) and where to save the prediction results
(--output_folder).

For the sake of this tutorial, we use one of the saved models from our previous training run and use it for inference
using eirpredict module. Here, we will simply use it to predict on the same data as before.

Warning: We are only predicting on the same data we trained on in this tutorial to show how to use the eirpredict
module. Always take care in separating what data you use for training and to evaluate generalization performance
of your models!

Run the commands below, making sure you add the correct path of a saved model to the --model_path argument.

To test, we can run the following command (note that you will have to add the path to your saved model for the
--model_path parameter below).

eirpredict \
--global_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_globals.
→˓yaml \
--input_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_input.yaml \
--output_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_outputs.
→˓yaml \
--model_path eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/saved_models/
→˓tutorial_01_run_model_600_perf-average=0.8764.pt \
--evaluate \
--output_folder eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/test_predictions/
→˓known_outputs

This will generate a file called calculated_metrics.json in the supplied output_folder as well as a folder for
each output (in this case called ancestry_output containing the actual predictions and plots. Of course the metrics
are quite nonsensical here, as we are predicting on the same data we trained on.

12 Chapter 2. Documentation

EIR

One of the files generated are the actual predictions, found in the predictions.csv file:

The True Label Untransformed column contains the actual labels, as they were in the raw data. The True Label
column contains the labels after they have been numerically encoded / normalized in EIR. The other columns represent
the raw network outputs for each of the classes.

Predicting on samples with unknown labels

Notice that when running the command above, we knew the labels of the samples we were predicting on. In practice,
we are often predicting on samples we have no clue about the labels of. In this case, we can again use the eirpredict
with slightly modified arguments:

eirpredict \
--global_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_globals.
→˓yaml \
--input_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_input.yaml \
--output_configs eir_tutorials/a_using_eir/01_basic_tutorial/conf/tutorial_01_outputs_
→˓unknown.yaml \
--model_path eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/saved_models/
→˓tutorial_01_run_model_600_perf-average=0.8764.pt \
--output_folder eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/test_predictions/
→˓unknown_outputs

We can notice a couple of changes here compared to the previous command:

1. We have removed the --evaluate flag, as we do not have the labels for the samples we are predicting on.

2. We have a different output configuation file, tutorial_01_outputs_unknown.yaml.

3. We have a different output folder, tutorial_01_unknown.

If we take a look at the tutorial_01_outputs_unknown.yaml file, we can see that it contains the following:

2.1. Supervised Learning 13

EIR

Listing 4: tutorial_01_outputs_unknown.yaml

output_info:
output_name: ancestry_output
output_source: null
output_type: tabular

output_type_info:
target_cat_columns:

- Origin

Notice that everything is the same as before, but for output_source we have null instead of the .csv label file we
had before.

Taking a look at the produced predictions.csv file, we can see that we only have the actual predictions, and no true
labels:

D - Applying to your own data (e.g. UK Biobank)

Thank you for reading this far! Hopefully this tutorial introduced you well enough to the framework so you can apply it
to your own data. For that, you will have to process it first (see: plink pipelines). Then you will have to set the relevant
paths for the inputs (e.g. input_source, snp_file) and outputs (e.g. output_source, target_cat_columns or
target_con_columns if you have continuous targets).

Important: If you are interested in quickly training deep learning models for genomic prediction, the EIR-auto-GP
project might be of use to you.

When moving to large scale data such as the UK Biobank, the configurations we used on the ancestry toy data in this
tutorial will likely not be sufficient. For example, the learning rate is likely too high. For this, here are some baseline
configurations that we have found to work well as a starting point:

Listing 5: globals.yaml

output_folder: "FILL"
sample_interval: 500
checkpoint_interval: 500
batch_size: "FILL"
lr: 0.0002
lr_plateau_patience: 5
gradient_clipping: 1.0
valid_size: "FILL"
n_epochs: 50
dataloader_workers: "FILL"
device: "FILL"
early_stopping_buffer: 2000
early_stopping_patience: 10
mixing_alpha: 0.2
optimizer: "adabelief"
weighted_sampling_columns: # for categorical targets, remove if only doing regression
- "all"

log_level: "debug"

14 Chapter 2. Documentation

https://github.com/arnor-sigurdsson/plink_pipelines
https://github.com/arnor-sigurdsson/EIR-auto-GP

EIR

Listing 6: input_genotype.yaml

input_info:
input_source: "FILL"
input_name: "genotype"
input_type: "omics"

input_type_info:
mixing_subtype: "cutmix-block"
na_augment_alpha: 1.0
na_augment_beta: 2.0
snp_file: "FILL" # can delete if not computing attributions

model_config:
model_type: "genome-local-net"
model_init_config:
rb_do: 0.1
channel_exp_base: 2
kernel_width: 16
first_kernel_expansion: -4
l1: 0.0
cutoff: 4096

Listing 7: input_tabular.yaml

input_info:
input_source: "FILL"
input_name: "tabular_input"
input_type: "tabular"

input_type_info:
input_cat_columns:
- "FILL"

input_con_columns:
- "FILL"

model_config:
model_type: "tabular"
model_init_config:
fc_layer: true

Listing 8: fusion.yaml

model_config:
fc_do: 0.1
fc_task_dim: 512
layers:

- 2
rb_do: 0.1
stochastic_depth_p: 0.1

model_type: "default"

Listing 9: output.yaml

output_info:
output_name: "FILL"

(continues on next page)

2.1. Supervised Learning 15

EIR

(continued from previous page)

output_source: "FILL"
output_type: "tabular"

output_type_info:
target_con_columns:

- "FILL"
target_cat_columns:
- "FILL"

model_config:
model_type: "mlp_residual"
model_init_config:
rb_do: 0.2
fc_do: 0.2
fc_task_dim: 512
layers:
- 2

stochastic_depth_p: 0.2
final_layer_type: "linear"

E - Serving

In this final section, we demonstrate serving our trained model as a web service and interacting with it using HTTP
requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_01_run/saved_models/
→˓tutorial_01_run_model_600_perf-average=0.8764.pt

Sending Requests

With the server running, we can now send requests. The requests are prepared by loading numpy array data, converting
it to base64 encoded strings, and then constructing a JSON payload.

Here’s an example Python function demonstrating this process:

import numpy as np
import base64
import requests

def encode_numpy_array(file_path: str) -> str:
(continues on next page)

16 Chapter 2. Documentation

EIR

(continued from previous page)

array = np.load(file_path)
encoded = base64.b64encode(array.tobytes()).decode('utf-8')
return encoded

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

encoded_data = encode_numpy_array('path_to_your_numpy_array.npy')
response = send_request('http://localhost:8000/predict', {'genotype': encoded_data})
print(response)

Analyzing Responses

Here are some examples of responses from the server for a set of inputs:

Listing 10: predictions.json

[
{

"request": {
"genotype": "eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_

→˓sample_data/arrays/A374.npy"
},
"response": {

"result": {
"ancestry_output": {

"Origin": {
"Asia": 0.010410779155790806,
"Eastern_Asia": 0.0011356589384377003,
"Europe": 0.854654848575592,
"Latin_America_and_the_Caribbean": 0.008827924728393555,
"Middle_East": 0.1237422451376915,
"Sub-Saharan_Africa": 0.00122847652528435

}
}

}
}

},
{

"request": {
"genotype": "eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_

→˓sample_data/arrays/Ayodo_468C.npy"
},
"response": {

"result": {
"ancestry_output": {

"Origin": {
"Asia": 0.0017986423335969448,
"Eastern_Asia": 0.0030721763614565134,
"Europe": 0.0034481489565223455,

(continues on next page)

2.1. Supervised Learning 17

EIR

(continued from previous page)

"Latin_America_and_the_Caribbean": 0.026503251865506172,
"Middle_East": 0.1034306138753891,
"Sub-Saharan_Africa": 0.861747145652771

}
}

}
}

},
{

"request": {
"genotype": "eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_

→˓sample_data/arrays/NOR146.npy"
},
"response": {

"result": {
"ancestry_output": {

"Origin": {
"Asia": 0.008015047758817673,
"Eastern_Asia": 0.0006639149505645037,
"Europe": 0.9414306282997131,
"Latin_America_and_the_Caribbean": 0.03938961401581764,
"Middle_East": 0.009529098868370056,
"Sub-Saharan_Africa": 0.0009716283529996872

}
}

}
}

}
]

2.1.2 02 – Tabular Tutorial: Nonlinear Poker Hands

A - Setup

In this tutorial, we will be training a model using only tabular data as input. The task is to predict poker hands from
the suit an rank of cards. See here for more information about the dataset.

Note that this tutorial assumes that you are already familiar with the basic functionality of the framework (see 01 –
Genotype Tutorial: Ancestry Prediction).

To download the data for for this tutorial, use this link.

Having a quick look at the data, we can see it consists of 10 categorical inputs columns and 1 categorical output column
(which has 10 classes).

$ head -n 3 poker_hands_data/poker_hands_train.csv

ID,S1,C1,S2,C2,S3,C3,S4,C4,S5,C5,CLASS
0,2,11,2,13,2,10,2,12,2,1,9
1,3,12,3,11,3,13,3,10,3,1,9

To start with, we can use the following configurations for the global, input, target and predictor parts respectively:

18 Chapter 2. Documentation

https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://drive.google.com/file/d/1Ck1F_iYT3WdoAHjtPwR1peOqhwjmCqHl

EIR

Listing 11: 02_poker_hands_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_02_run
manual_valid_ids_file: eir_tutorials/a_using_eir/02_tabular_tutorial/data/poker_hands_
→˓data/pre_split_valid_ids.txt
n_saved_models: 1
checkpoint_interval: 1000
sample_interval: 1000
n_epochs: 50

Note: You might notice the perhaps new manual_valid_ids_file argument in the global configuration. This is
because the data is quite imbalanced, so we provide a pre-computed validation set to ensure that all classes are present
in both the training and validation set. Be aware that currently the framework does not handle having a mismatch in
which classes are present in the training and validation sets.

Listing 12: 02_poker_hands_input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/02_tabular_tutorial/data/poker_hands_data/

→˓poker_hands_train.csv
input_name: poker_hands
input_type: tabular

input_type_info:
input_cat_columns:

- S1
- C1
- S2
- C2
- S3
- C3
- S4
- C4
- S5
- C5

model_config:
model_type: tabular

Listing 13: 02_poker_hands_fusion.yaml

model_type: mlp-residual
model_config:
rb_do: 0.20
fc_do: 0.20

Listing 14: 02_poker_hands_output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/02_tabular_tutorial/data/poker_hands_data/

→˓poker_hands_train.csv
(continues on next page)

2.1. Supervised Learning 19

EIR

(continued from previous page)

output_name: poker_prediction
output_type: tabular

output_type_info:
target_cat_columns:

- CLASS

So, after setting up, our folder structure should look something like this:

eir_tutorials/a_using_eir/02_tabular_tutorial/
conf

02_poker_hands_fusion.yaml
02_poker_hands_globals.yaml
02_poker_hands_input.yaml
02_poker_hands_output.yaml

data
poker_hands_data

poker_hands_test.csv
poker_hands_train.csv
pre_split_valid_ids.txt

B - Training

Now we are ready to train our first model! We can use the command below, which feeds the configs we defined above
to the framework (fully running this should take around 10 minutes, so now is a good time to stretch your legs or grab
a cup of coffee!):

eirtrain \
--global_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_input.
→˓yaml \
--fusion_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓fusion.yaml \
--output_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓output.yaml

We can examine how our model did with respect to accuracy by checking the training_curve_ACC.png file:

20 Chapter 2. Documentation

EIR

However, we do know that the data is very imbalanced, so a better idea might be checking the MCC:

2.1. Supervised Learning 21

EIR

Both look fairly good, but how are we really doing? Let’s check the confusion matrix for our predictions at iteration
15000:

22 Chapter 2. Documentation

EIR

So there it is – we are performing quite well for classes 0-3, but (perhaps as expected), we perform very poorly on the
rare classes.

In any case, let’s have a look at how well we do on the test set!

C - Predicting on test set

To test, we can run the following command (note that you will have to add the path to your saved model for the
--model_path parameter below).

eirpredict \
--global_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_input_
→˓test.yaml \
--fusion_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓fusion.yaml \
--output_configs eir_tutorials/a_using_eir/02_tabular_tutorial/conf/02_poker_hands_
→˓output_test.yaml \
--model_path eir_tutorials/tutorial_runs/a_using_eir/tutorial_02_run/saved_models/
→˓tutorial_02_run_model_15000_perf-average=0.8400.pt \

(continues on next page)

2.1. Supervised Learning 23

EIR

(continued from previous page)

--evaluate \
--output_folder eir_tutorials/tutorial_runs/a_using_eir/tutorial_02_run/

This will create the following extra files in the eir_tutorials/tutorial_runs/a_using_eir/tutorial_02_run
directory

CLASS
confusion_matrix.png
mc_pr_curve.png
mc_roc_curve.png
predictions.csv

calculated_metrics.json

The calculated_metrics.json file can be quite useful, as it contains the performance of our model on the test set.

Listing 15: calculated_metrics.json

{"poker_prediction": {"CLASS": {"poker_prediction_CLASS_mcc": 0.981885141539836, "poker_
→˓prediction_CLASS_acc": 0.9897459897459897, "poker_prediction_CLASS_roc-auc-macro": 0.
→˓9290761712622213, "poker_prediction_CLASS_ap-macro": 0.5669042208423734, "poker_
→˓prediction_CLASS_loss": 0.04536255821585655}}, "average": {"average": {"loss-average":␣
→˓0.04536255821585655, "perf-average": 0.8259551778814769}}}

This seems pretty good, but we don’t really have any baseline to compare it to. Luckily, there is an great paper titled
TabNet: Attentive Interpretable Tabular Learning, which is also using NNs on tabular data, and they even use the Poker
Hand dataset as well!

Table 1: TabNet paper performances for Poker Hand induction dataset.

Model Test accuracy (%)
DT 50.0
MLP 50.0
Deep neural DT 65.1
XGBoost 71.1
LightGBM 70.0
CatBoost 66.6
TabNet 99.2
Rule-based 100.0

So using our humble model before we saw an accuracy of 99.1%. Of course, since the dataset is highly imbalanced,
it can be difficult to compare with the numbers in the table above. For example it can be that TabNet is performing
very well on the rare classes, which will not have a large effect on the total test accuracy. However, our performance
is perhaps a nice baseline, especially since TabNet is a much more complex model, and we did not do extensive hyper-
parameter tuning!

24 Chapter 2. Documentation

https://arxiv.org/abs/1908.07442

EIR

E - Serving

In this final section, we demonstrate serving our trained model as a web service and interacting with it using HTTP
requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_02_run/saved_models/
→˓tutorial_02_run_model_15000_perf-average=0.8400.pt

Sending Requests

With the server running, we can now send requests. For tabular data, we send the payload directly as a Python dictionary.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"poker_hands": {

"S1": "3", "C1": "12",
"S2": "3", "C2": "2",
"S3": "3", "C3": "11",
"S4": "4", "C4": "5",
"S5": "2", "C5": "5"

}
}

response = send_request('http://localhost:8000/predict', payload)
print(response)

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

(continues on next page)

2.1. Supervised Learning 25

EIR

(continued from previous page)

"poker_hands": {
"S1": "3", "C1": "12",
"S2": "3", "C2": "2",
"S3": "3", "C3": "11",
"S4": "4", "C4": "5",
"S5": "2", "C5": "5"

}
}'

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s predictions based on the input data.

Listing 16: predictions.json

[
{

"request": {
"poker_hands": {

"S1": "3",
"C1": "12",
"S2": "3",
"C2": "2",
"S3": "3",
"C3": "11",
"S4": "4",
"C4": "5",
"S5": "2",
"C5": "5"

}
},
"response": {

"result": {
"poker_prediction": {

"CLASS": {
"0": 1.188167789223371e-05,
"1": 0.9977349042892456,
"2": 0.002234159503132105,
"3": 7.436228770529851e-06,
"4": 1.001353666651994e-07,
"5": 4.333995548222447e-06,
"6": 8.68369767204058e-08,
"7": 8.973422893632232e-08,
"8": 4.198012902634218e-06,
"9": 2.7543637770577334e-06

}
}

}
}

}
(continues on next page)

26 Chapter 2. Documentation

EIR

(continued from previous page)

]

If you made it this far, I want to thank you for reading. I hope this tutorial was useful / interesting to you!

2.1.3 03 – Sequence Tutorial: Movie Reviews and Peptides

In this tutorial, we will be training models using discrete sequences as inputs. Here, we will be doing two tasks. Firstly,
we train a model to classify positive vs. negative sentiment in the IMDB reviews dataset. Secondly, we will train
another model to detect anticancer properties in peptides using the anticancer peptides dataset.

Note that this tutorial assumes that you are already familiar with the basic functionality of the framework (see 01 –
Genotype Tutorial: Ancestry Prediction).

A - IMDB Reviews

A1 - IMDB Setup

For this first task, we will do a relatively classic NLP task, where we train a model to predict sentiment from IMDB
reviews, see here for more information about the data. To download the data and configurations for this part of the
tutorial, use this link.

Here we can see an example of one review from the dataset.

$ cat IMDB/IMDB_Reviews/3314_1.txt

Reading through all these positive reviews I find myself baffled.
How is it that so many enjoyed what I consider to be a woefully bad adaptation
of my second favourite Jane Austen novel? There are many problems with the film,
already mentioned in a few reviews; simply put it is a hammed-up, over-acted,
chintzy mess from opening credits to butchered ending.

While many
characters are mis-cast and neither Ewan McGregor nor Toni Collette puts in a
performance that is worthy of them, the worst by far is Paltrow. \
I have very much enjoyed her performance in some roles, but here she is
abominable - she is self-conscious, nasal, slouching and entirely disconnected
from her characters and those around her. An extremely disappointing effort -
though even a perfect Emma could not have saved this film.

Whatever movie this review is from, it seems that the person certainly did not enjoy it! This is fairly obvious for us to
see, now the question is if we train a model to do the same.

As in previous tutorials, we will start by defining our configurations.

Listing 17: 03a_imdb_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_03_imdb_run
valid_size: 0.10
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
memory_dataset: true
n_epochs: 25
compute_attributions: true

(continues on next page)

2.1. Supervised Learning 27

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://drive.google.com/file/d/1u6bkIr9sECkU9z3Veutjn8cx6Mu3GP3Z

EIR

(continued from previous page)

max_attributions_per_class: 512
attributions_every_sample_factor: 4

Note: You might notice that in the global configuration in this tutorial, we have a couple of
new parameters going on. Namely the compute_attributions, max_attributions_per_class and
attributions_every_sample_factor. These are settings related to computing attributions so we can inter-
pret/explain how our inputs influence the model outputs. For more information, check out the Configuration API
reference.

Listing 18: 03a_imdb_input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/IMDB/IMDB_Reviews
input_name: imdb_reviews
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 64
split_on: " "
min_freq: 10
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
model_type: sequence-default
embedding_dim: 32
position: embed
pool: avg
model_init_config:
num_heads: 2
dropout: 0.2

Listing 19: 03a_imdb_output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/IMDB/imdb_labels.csv
output_name: imdb_output
output_type: tabular

output_type_info:
target_cat_columns:

- Sentiment

Tip: There are a lot of new configuration options going on here, head over to the Configuration API reference for
more details.

Now with the configurations set up, our folder structure should look like this:

28 Chapter 2. Documentation

EIR

Listing 20: Folder structure after setting up the configurations.

eir_tutorials/a_using_eir/03_sequence_tutorial/
a_IMDB

conf
03a_imdb_globals.yaml
03a_imdb_input.yaml
03a_imdb_output.yaml

data
IMDB

IMDB_Reviews
conf
imdb.vocab
imdb_labels.csv

A2 - IMDB Training

As before, we can train a model using eirtrain:

Listing 21: Training a model to predict sentiment from IMDB reviews.

eirtrain \
--global_configs eir_tutorials/a_using_eir/03_sequence_tutorial/a_IMDB/conf/03a_imdb_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/03_sequence_tutorial/a_IMDB/conf/03a_imdb_
→˓input.yaml \
--output_configs eir_tutorials/a_using_eir/03_sequence_tutorial/a_IMDB/conf/03a_imdb_
→˓output.yaml

This took around 20 minutes to run on my laptop, so this is a good chance to take a nap or do something else for a
while!

Looking at the accuracy, I got the following training/validation results:

2.1. Supervised Learning 29

EIR

Perhaps not great, but not too bad either! Especially since we are using a relatively short sequence length.

Note: Here we are using a transformer based neural network for the training, however do not underestimate the
power of classical, more established methods. In fact, simpler, non neural-network based methods have attained better
accuracy that what we see above! If you have some time to kill, try playing with the hyper parameters a bit to see how
they affect the performance.

A3 - IMDB Interpretation

Now remember those new flags we used in the global configuration, compute_attributions and friends? Set-
ting those will instruct the framework to compute and analyze how the inputs influence the model towards a cer-
tain output. In this case, the attributions can be found in the imdb_sentiment/results/Sentiment/samples/
<every_2000_iterations>/attributions folders. Behind the scenes, the framework uses integrated gradients,
implemented in the fantastic the Captum library, to compute the attributions.

Firstly, let’s have a look at the words that had the biggest influence towards a Positive and Negative sentiment.

30 Chapter 2. Documentation

https://arxiv.org/abs/1703.01365
https://captum.ai/

EIR

2.1. Supervised Learning 31

EIR

Note: Which tokens are included in this plot and how they are sorted is based both on the average and 95% confidence
interval of the attribution. The raw values are also stored, in case you want to do your own analysis. The CIs represent
the 95% confidence interval after 1,000 bootstrap samples.

So fortunately, it seems indeed that our model learned some relevant things! When training on sequences, the framework
will also by default save attributions towards the relevant label for 10 single samples, here is one such example, where
we look at the attributions towards a positive sentiment.

That concludes the NLP specific part of this tutorial, next we will apply the same approach but for biological data!

32 Chapter 2. Documentation

EIR

B - Anticancer Peptides

B1 - Anticancer Peptides Setup

Modelling on language like we did above is both fun and relatable, but now we try something a bit more niche. For
this second part of the tutorial, we will use the framework to predict anti breast cancer properties of peptides (a peptide
is basically a short protein sequence). See here for more information about the dataset. To download the data and
configurations for this part of the tutorial, use this link.

Again, let’s take a quick look at one sample we are going to be modelling on:

Here we can see an example of one review from the dataset.

$ cat Anticancer_Peptides/breast_cancer_train/1.txt

AAWKWAWAKKWAKAKKWAKAA

So immediately we can see that this is fairly different from our movie reviews, let’s see how it goes with the mod-
elling part. As always, we start with the configurations. You might notice a new option in the global configuration,
weighted_sampling_columns. This setting controls which target column to use for weighted sampling, and the
special keyword all will take an average across all target columns. In this case we have only one (“class”), so it just
accounts for that one. This can be useful for this dataset as it is quite imbalanced w.r.t. target labels, as you will see
momentarily.

Listing 22: 03b_peptides_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_03_anti_breast_cancer_
→˓peptides_run
valid_size: 0.25
n_saved_models: 1
checkpoint_interval: 200
sample_interval: 200
n_epochs: 500
memory_dataset: True
batch_size: 32
early_stopping_buffer: 2000
compute_attributions: True
attributions_every_sample_factor: 3
max_attributions_per_class: 512
weighted_sampling_columns:

- all

Note: You might notice that we use a large validation set here. This a similar situation as in 02 – Tabular Tutorial:
Nonlinear Poker Hands, where we used a manual validation set to ensure that we have all classes present in the validation
set. Here, we take the lazier approach and just make the validation set larger. Currently the framework does not handle
having a mismatch in which classes are present in the training and validation sets.

Notice that the input configuration is slightly different. For example, as we are not dealing with natural language, we
do not split on whitespace anymore, but rather on “”.

2.1. Supervised Learning 33

https://pubmed.ncbi.nlm.nih.gov/30953170/
https://drive.google.com/file/d/12vHW1V8hhIuasih_gWPn7xHmZZTAd22Q

EIR

Listing 23: 03b_peptides_input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/Anticancer_Peptides/

→˓breast_cancer_train
input_name: peptide_sequences
input_type: sequence

input_type_info:
max_length: "max"
split_on: ""
min_freq: 1

model_config:
model_type: sequence-default
position: embed
embedding_dim: 32
pool: avg
model_init_config:
num_heads: 8
dropout: 0.2

interpretation_config:
num_samples_to_interpret: 30
interpretation_sampling_strategy: random_sample

Listing 24: 03b_peptides_output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/Anticancer_Peptides/

→˓breast_cancer_labels.csv
output_name: peptides_output
output_type: tabular

output_type_info:
target_cat_columns:

- class

B1 - Anticancer Peptides Training

For the peptide data, the folder structure should look something like this:

eir_tutorials/a_using_eir/03_sequence_tutorial/
b_Anticancer_peptides

conf
03b_peptides_globals.yaml
03b_peptides_input.yaml
03b_peptides_output.yaml

data
Anticancer_Peptides

breast_cancer_labels.csv
(continues on next page)

34 Chapter 2. Documentation

EIR

(continued from previous page)

breast_cancer_train

As before, we run:

eirtrain \
--global_configs eir_tutorials/a_using_eir/03_sequence_tutorial/b_Anticancer_peptides/
→˓conf/03b_peptides_globals.yaml \
--input_configs eir_tutorials/a_using_eir/03_sequence_tutorial/b_Anticancer_peptides/
→˓conf/03b_peptides_input.yaml \
--output_configs eir_tutorials/a_using_eir/03_sequence_tutorial/b_Anticancer_peptides/
→˓conf/03b_peptides_output.yaml

As the data is imbalanced, we will look at the MCC training curve:

Checking the confusion matrix at iteration 2000, we see:

2.1. Supervised Learning 35

EIR

Looking at the training curve, we see that we are definitely overfitting quite a bit! We could probably squeeze out a
better performance by playing with the hyperparameters a bit, but for now we will keep going!

As before, let’s have a look at the attributions. In this case we will check attributions towards the moderately active
class:

36 Chapter 2. Documentation

EIR

In this case, it seems that there is a high degree of uncertainty in the attributions, as the confidence intervals are quite
large. This is likely due to the fact that the dataset is quite imbalanced, and there are few samples of moderately active
peptides in the validation set.

Looking at an example of single moderately active sample and how its inputs influence the model towards a prediction
of the moderately active class, we see:

Warning: Remember that this does not necessarily tell us anything about actual biological causality!

2.1. Supervised Learning 37

EIR

E - Serving

In this final section, we demonstrate serving our trained model as a web service and interacting with it using HTTP
requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_03_imdb_run/saved_models/
→˓tutorial_03_imdb_run_model_3500_perf-average=0.7969.pt

Sending Requests

With the server running, we can now send requests. For sequence data like IMDb reviews, we send the payload as a
simple JSON object.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"imdb_reviews": "This movie was great! I loved it!"

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

"imdb_reviews": "This movie was great! I loved it!"
}'

38 Chapter 2. Documentation

EIR

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s predictions based on the input data.

Listing 25: predictions.json

[
{

"request": {
"imdb_reviews": "This move was great! I loved it!"

},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.10254316031932831,
"Positive": 0.8974568247795105

}
}

}
}

},
{

"request": {
"imdb_reviews": "This move was terrible! I hated it!"

},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.862532913684845,
"Positive": 0.13746710121631622

}
}

}
}

},
{

"request": {
"imdb_reviews": "You'll have to have your wits about you and your brain␣

→˓fully switched on watching Oppenheimer as it could easily get away from a nonattentive␣
→˓viewer. This is intelligent filmmaking which shows it's audience great respect. It␣
→˓fires dialogue packed with information at a relentless pace and jumps to very␣
→˓different times in Oppenheimer's life continuously through it's 3 hour runtime. There␣
→˓are visual clues to guide the viewer through these times but again you'll have to get␣
→˓to grips with these quite quickly. This relentlessness helps to express the urgency␣
→˓with which the US attacked it's chase for the atomic bomb before Germany could do the␣
→˓same. An absolute career best performance from (the consistenly brilliant) Cillian␣
→˓Murphy anchors the film. "

},
"response": {

"result": {
(continues on next page)

2.1. Supervised Learning 39

EIR

(continued from previous page)

"imdb_output": {
"Sentiment": {

"Negative": 0.017507053911685944,
"Positive": 0.9824929237365723

}
}

}
}

}
]

This concludes the sequence tutorial, thank you for making it this far. I hope you enjoyed it and it was useful to you.
Feel free to try this out on your own data, I would love to hear about it!

2.1.4 04 – Established Architectures and Pretrained Models

In this tutorial, we will be seeing, how we can use local transformers, state-of-the-art, NLP architectures, and pretrained
NLP models with EIR in order to predict sentiment from text. We will be using the IMDB reviews dataset, see here for
more information about the data. To download the data and configurations for this part of the tutorial, use this link.

Note that this tutorial assumes that you are already familiar with the basic functionality of the framework (see 01 –
Genotype Tutorial: Ancestry Prediction). If you have not already, it can also be useful to go over the sequence tutorial
(see 03 – Sequence Tutorial: Movie Reviews and Peptides).

A - Baseline

After downloading the data, the folder structure should look something like this (note that at this point, the yaml
configuration files are probably not present, but we will make them during this tutorial, alternatively you can download
them from the project repository):

eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/
conf

04_imdb_globals.yaml
04_imdb_input.yaml
04_imdb_input_longformer.yaml
04_imdb_input_tiny-bert.yaml
04_imdb_input_windowed.yaml
04_imdb_output.yaml

data
IMDB

IMDB_Reviews
conf
imdb.vocab
imdb_labels.csv

First we will use the built-in transformer model in EIR, just to establish a baseline.

As always, configurations first!

40 Chapter 2. Documentation

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://drive.google.com/file/d/1u6bkIr9sECkU9z3Veutjn8cx6Mu3GP3Z

EIR

Listing 26: 04_imdb_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_run
valid_size: 0.10
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
early_stopping_patience: 5
memory_dataset: true
n_epochs: 25
mixing_alpha: 0.2
device: "mps"
dataloader_workers: 0

Note: Training these sequence models can take quite some time if one is using a laptop. If possible, try using a system
with a GPU available! If not, set the device setting to ‘cpu’.

Note: You might notice that we have a new configuration in our global config, mixing_alpha. The parameter controls
the level of Mixup, a really cool data augmentation which is included in the framework, and is automatically applied
to all input modalities (genotype, tabular, sequence, images, binary data) when set in the global configuration.

Listing 27: 04_imdb_input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 128
split_on: " "
min_freq: 10
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
model_type: sequence-default
embedding_dim: 32
position: embed
pool: avg
model_init_config:
num_heads: 2
dropout: 0.2

Listing 28: 04_imdb_output.yaml

output_info:
(continues on next page)

2.1. Supervised Learning 41

https://arxiv.org/pdf/1710.09412.pdf

EIR

(continued from previous page)

output_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/IMDB/imdb_labels.csv
output_name: imdb_output
output_type: tabular

output_type_info:
target_cat_columns:

- Sentiment

As before, we do our training with the following command:

eirtrain \
--global_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓input.yaml \
--output_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓output.yaml

Checking the accuracy, we see:

A little better than what we saw in the 03 – Sequence Tutorial: Movie Reviews and Peptides, which makes sense as here
we are using longer sequences and more data augmentation. In any case, now we have a nice little baseline to compare
to!

42 Chapter 2. Documentation

EIR

B - Local Transformer

Transformer models are notorious for being quite expensive to train computationally, both when it comes to memory
and raw compute. The main culprit is the quadratic increase w.r.t. input length. One relatively straightforward way
to get around this is not looking at the full sequence at once, but rather in parts (kind of like a convolution). This
functionality is included by default and can be controlled with the window_size parameter of the input_type_info
field when training sequence models.

Now, let’s try training one such model, using a window size of 64 and increasing the maximum sequence length to 512:

Listing 29: 04_imdb_input_windowed.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews_windowed
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 512
split_on: " "
min_freq: 10
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
model_type: sequence-default
window_size: 64
position: embed
pool: avg
embedding_dim: 32
model_init_config:
num_heads: 2
dropout: 0.2

To train, we just swap out the input configuration from the command above:

eirtrain \
--global_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓input_windowed.yaml \
--output_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓output.yaml \
--04_imdb_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_
→˓run_local

Training this model gave the following training curve:

2.1. Supervised Learning 43

EIR

Indeed, increasing the sequence length does seem to help, and using a window size of 64 seems to work fairly well.

C - Established architecture: Longformer

Now, the windowed approach above is perhaps a quick win to tackle the scaling problems of transformers when it
comes to input length. In fact, this is such a notorious problem that people have done a lot of work in finding cool
architectures and methods to get around it. By taking advantage of the excellent work Hugging Face has done, we can
use these established architectures within EIR (big thanks to them by the way!). The architecture we will be using is
called Longformer, and as mentioned it tries to approximate full self-attention in order to scale linearly w.r.t input size.

Tip: Hugging Face has implemented a bunch of other pretrained models and architectures, check this link for an
exhaustive list.

To use the Longformer model, we use the following configuration, notice that in the model configuration we are now
passing in flags specifically to the LongFormer model:

Listing 30: 04_imdb_input_longformer.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews_longformer

(continues on next page)

44 Chapter 2. Documentation

https://huggingface.co
https://arxiv.org/abs/2004.05150
https://huggingface.co/transformers/#supported-frameworks

EIR

(continued from previous page)

input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 512
split_on: " "
min_freq: 10
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
model_type: longformer
pretrained_model: false
position: embed
pool: avg
model_init_config:

num_hidden_layers: 2
hidden_size: 32
num_attention_heads: 2
intermediate_size: 32
attention_window: 64
max_position_embeddings: 1024

Note: The established architectures can have a bunch of different configurations available. Head over to the Hugging
Face docs to see which flags they accept and what they do. For example, the LongFormer docs can be found here.

We train with the following command:

eirtrain \
--global_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓input_longformer.yaml \
--output_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓output.yaml \
--04_imdb_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_
→˓run_longformer

And get the following training curve:

2.1. Supervised Learning 45

https://huggingface.co/transformers/model_doc/longformer.html#longformerconfig

EIR

Indeed, we see an improvement on the validation set when using the the Longformer model compared to the first run.
There does not seem to be a big difference compared to our local transformer run, Of course, we would have to evaluate
on a test set to get the final performance, but this is looking pretty good!

D - Pretrained Model: Tiny BERT

Now, we have seen how we can use cool architectures to train our models. However, we can take this one step further
and use a pretrained model as well, taking advantage of the fact that they have already been trained on a bunch of data.

In this case, we will use a little BERT model called Tiny BERT. The approach is almost the same as we saw above with
the Longformer, here is the configuration:

Listing 31: 04_imdb_input_tiny-bert.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews_tiny_bert
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 512

(continues on next page)

46 Chapter 2. Documentation

https://arxiv.org/abs/1908.08962

EIR

(continued from previous page)

split_on: " "
min_freq: 10

model_config:
model_type: "prajjwal1/bert-tiny"
pretrained_model: true
freeze_pretrained_model: false
position: embed
pool: avg

Note that when using these pretrained models, we are generally not configuring things like tokenizers and
model_config, as we use the default tokenizers and configurations used to train the model. EIR will do this au-
tomatically when you leave the fields blank like above. Also notice the flag, freeze_pretrained_model, if set to
False, we will not train the weights of the pretrained model but rather leave them as they are. This can greatly speed
up training, but can come a cost of performance as we are not fine tuning the this part of our model for our task.

Note: For the pretrained models, we again take advantage of the excellent work from Hugging Face. In this case, the
have a hub with a bunch of pretrained models, which we can use with EIR.

This model is quite a bit larger than the nones we have used so far so here it helps to have a powerful computer. We
run this as always with:

eirtrain \
--global_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓input_tiny-bert.yaml \
--output_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓output.yaml \
--04_imdb_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_
→˓run_tiny-bert

The training curve looks like so:

2.1. Supervised Learning 47

https://huggingface.co/models

EIR

The pre-trained model performs quite similarly to our other long context models. However, notice how quickly it
reached it top validation performance compared to the other models. Therefore, even though we are using a much
bigger model than before, this kind of fine tuning can save us a lot of time!

Note: Many of these pretrained architectures are trained on data that is automatically crawled from the web. Therefore
in this case, there might be possibility they have seen our reviews before as part of their training! Of course we are not
too concerned for the sake of this tutorial.

E - Combining Models

So far we have seen how can can train bunch of cool models by themselves, but now we will be a bit cheeky and
combined them into one big model.

Warning: Make sure that the input_name under the input_info field is unique for each input when doing
combining models.

In this case, we will freeze the weights of the pretrained Tiny BERT part of our model.

eirtrain \
--global_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_

(continues on next page)

48 Chapter 2. Documentation

EIR

(continued from previous page)

→˓globals.yaml \
--input_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓input_windowed.yaml eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_
→˓imdb_input_longformer.yaml eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/
→˓conf/04_imdb_input_tiny-bert.yaml \
--output_configs eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/conf/04_imdb_
→˓output.yaml \
--04_imdb_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_
→˓run_combined \
--04_imdb_globals.device='cpu'

And our performance:

So in this case, we do not see a huge improvement when combining our models. However when relevant, it can greatly
boost performance especially in those cases where the different input configurations refer to different modalities, i.e.
do not just act on the same input like we did above.

Tip: Combining input configs is not only confined to sequence models or even the same modalities. For ex-
ample, to train a model that uses genotype, sequence and tabular data, just pass the relevant configurations to the
--input_configs flag!

2.1. Supervised Learning 49

EIR

F - Serving

In this final section, we demonstrate serving our trained model as a web service and interacting with it using HTTP
requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_04_imdb_run_combined/saved_
→˓models/tutorial_04_imdb_run_combined_model_1000_perf-average=0.8883.pt

Sending Requests

With the server running, we can now send requests. For this model, we send different features extracted from the same
input text.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"imdb_reviews_windowed": "This movie was great! I loved it!",
"imdb_reviews_longformer": "This movie was great! I loved it!",
"imdb_reviews_tiny_bert": "This movie was great! I loved it!"

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

"imdb_reviews_windowed": "This movie was great! I loved it!",
"imdb_reviews_longformer": "This movie was great! I loved it!",
"imdb_reviews_tiny_bert": "This movie was great! I loved it!"

}'

50 Chapter 2. Documentation

EIR

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s predictions based on the input data.

Listing 32: predictions.json

[
{

"request": {
"imdb_reviews_windowed": "This move was great! I loved it!",
"imdb_reviews_longformer": "This move was great! I loved it!",
"imdb_reviews_tiny_bert": "This move was great! I loved it!"

},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.03049383871257305,
"Positive": 0.9695060849189758

}
}

}
}

},
{

"request": {
"imdb_reviews_windowed": "This move was terrible! I hated it!",
"imdb_reviews_longformer": "This move was terrible! I hated it!",
"imdb_reviews_tiny_bert": "This move was terrible! I hated it!"

},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.9445462822914124,
"Positive": 0.05545369163155556

}
}

}
}

},
{

"request": {
"imdb_reviews_windowed": "You'll have to have your wits about you and your␣

→˓brain fully switched on watching Oppenheimer as it could easily get away from a␣
→˓nonattentive viewer. This is intelligent filmmaking which shows it's audience great␣
→˓respect. It fires dialogue packed with information at a relentless pace and jumps to␣
→˓very different times in Oppenheimer's life continuously through it's 3 hour runtime.␣
→˓There are visual clues to guide the viewer through these times but again you'll have␣
→˓to get to grips with these quite quickly. This relentlessness helps to express the␣
→˓urgency with which the US attacked it's chase for the atomic bomb before Germany could␣
→˓do the same. An absolute career best performance from (the consistenly brilliant)␣

(continues on next page)

2.1. Supervised Learning 51

EIR

(continued from previous page)

→˓Cillian Murphy anchors the film. ",
"imdb_reviews_longformer": "You'll have to have your wits about you and your␣

→˓brain fully switched on watching Oppenheimer as it could easily get away from a␣
→˓nonattentive viewer. This is intelligent filmmaking which shows it's audience great␣
→˓respect. It fires dialogue packed with information at a relentless pace and jumps to␣
→˓very different times in Oppenheimer's life continuously through it's 3 hour runtime.␣
→˓There are visual clues to guide the viewer through these times but again you'll have␣
→˓to get to grips with these quite quickly. This relentlessness helps to express the␣
→˓urgency with which the US attacked it's chase for the atomic bomb before Germany could␣
→˓do the same. An absolute career best performance from (the consistenly brilliant)␣
→˓Cillian Murphy anchors the film. ",

"imdb_reviews_tiny_bert": "You'll have to have your wits about you and your␣
→˓brain fully switched on watching Oppenheimer as it could easily get away from a␣
→˓nonattentive viewer. This is intelligent filmmaking which shows it's audience great␣
→˓respect. It fires dialogue packed with information at a relentless pace and jumps to␣
→˓very different times in Oppenheimer's life continuously through it's 3 hour runtime.␣
→˓There are visual clues to guide the viewer through these times but again you'll have␣
→˓to get to grips with these quite quickly. This relentlessness helps to express the␣
→˓urgency with which the US attacked it's chase for the atomic bomb before Germany could␣
→˓do the same. An absolute career best performance from (the consistenly brilliant)␣
→˓Cillian Murphy anchors the film. "

},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.031759195029735565,
"Positive": 0.9682407975196838

}
}

}
}

}
]

If you made it this far, I want to thank you for reading!

2.1.5 05 – Image Tutorial: Hot Dog or Not?

In this tutorial, we will be using EIR to train deep learning models for image classification. Specifically, we will be
training our models in the important task of classifying whether an image contains a hot dog or not We will be using a
subset of the Food-101 dataset, originally introduced here To download the data and configurations for this part of the
tutorial, use this link.

Note that this tutorial assumes that you are already familiar with the basic functionality of the framework (see 01 –
Genotype Tutorial: Ancestry Prediction). If you have not already, it can also be useful to go over the sequence tutorial
(see 03 – Sequence Tutorial: Movie Reviews and Peptides).

52 Chapter 2. Documentation

https://www.youtube.com/watch?v=vIci3C4JkL0
https://link.springer.com/chapter/10.1007%2F978-3-319-10599-4_29
https://drive.google.com/file/d/1g5slDIwtXcksjKlJ5anAiVCZGCM9AAHI

EIR

A - Baseline

eir_tutorials/a_using_eir/05_image_tutorial/
conf

globals.yaml
inputs.yaml
inputs_efficientnet_b0.yaml
inputs_resnet18.yaml
output.yaml

data
hot_dog_not_hot_dog

food_images
labels.csv

Looking at the data we are working with, we can indeed see that it contains images of hot dogs and all kinds of other
food:

I did not know drinking coffee/cacao with hot dogs was a thing. Anyway, now we will train a simple residual network
from scratch to get a little baseline. The image models we be using come from the excellent timm library, which
includes those used in this tutorial and many more!

To the configuration!

Listing 33: globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_05_is_it_a_hot_dog
valid_size: 0.10
device: "mps"
batch_size: 32
n_saved_models: 1

(continues on next page)

2.1. Supervised Learning 53

https://pypi.org/project/timm/

EIR

(continued from previous page)

dataloader_workers: 0
checkpoint_interval: 100
sample_interval: 100
n_epochs: 200
memory_dataset: True
max_attributions_per_class: 10
compute_attributions: True
mixing_alpha: 0.5
plot_skip_steps: 0

Listing 34: inputs.yaml

input_info:
input_source: eir_tutorials/a_using_eir/05_image_tutorial/data/hot_dog_not_hot_dog/

→˓food_images
input_name: hot_dog
input_type: image

input_type_info:
mixing_subtype: "cutmix"
size:
- 64

model_config:
model_type: "ResNet"
model_init_config:
layers: [1, 1, 1, 1]
block: "BasicBlock"

interpretation_config:
num_samples_to_interpret: 30

Listing 35: output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/05_image_tutorial/data/hot_dog_not_hot_

→˓dog/labels.csv
output_name: hot_dog_output
output_type: tabular

output_type_info:
target_cat_columns:

- CLASS

As usually, we do our training with the following command:

eirtrain \
--global_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/inputs.yaml \
--output_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/output.yaml

Note: Training these deep image models can take quite some time if one is using a laptop. If possible, try using a

54 Chapter 2. Documentation

EIR

system with a GPU available!

Now for the results, we see the following:

That looks kind of ok, but far from great. Our validation performance is all over the place (a contributing factor could
be that our validation set here is very small), and we don’t get a better performance than around 76%. Certainly not
good enough for an actual app!

B - Pretrained Image Model

Now we will take advantage of the fact that there exist pretrained models that have been trained on a bunch of data (not
just a few pictures of hot dogs and other food) and see whether that helps our performance.

Now our input configuration looks like this:

Listing 36: inputs_resnet18.yaml

input_info:
input_source: eir_tutorials/a_using_eir/05_image_tutorial/data/hot_dog_not_hot_dog/

→˓food_images
input_name: hot_dog_resnet18
input_type: image

(continues on next page)

2.1. Supervised Learning 55

EIR

(continued from previous page)

input_type_info:
mixing_subtype: "cutmix"
size:
- 64

model_config:
model_type: "resnet18"
pretrained_model: True

interpretation_config:
num_samples_to_interpret: 30

To train, we run:

eirtrain \
--global_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/inputs_resnet18.yaml \
--output_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/output.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_05_is_it_a_hot_
→˓dog_pretrained_resnet

Looking at our performance, we see:

56 Chapter 2. Documentation

EIR

Definitely better! One factor here could be that we are training on different image sizes than the original model was
trained on. In any case, let’s have a look at what our models are focusing on when deciding something is not a hot dog.
(perhaps you already noticed we set the compute_attributions value to True in the global configuration):

That is not a hot dog alright, and our model seems to agree.

C - Combining pretrained image models

For the last part of this tutorial, we will be combining two pretrained models. We will keep the ResNet18 models as it
is, feeding it 64 pixel images. We will also add a EfficientNet-B0 feature extractor, but feed it 224 pixel images.

The configuration for the EfficientNet part looks like this:

Listing 37: inputs_efficientnet_b0.yaml

input_info:
input_source: eir_tutorials/a_using_eir/05_image_tutorial/data/hot_dog_not_hot_dog/

→˓food_images
input_name: hot_dog_efficientnet
input_type: image

input_type_info:
mixing_subtype: "cutmix"
size:

(continues on next page)

2.1. Supervised Learning 57

EIR

(continued from previous page)

- 224

model_config:
model_type: "efficientnet_b0"
pretrained_model: True

interpretation_config:
num_samples_to_interpret: 30

Training as usual, notice that we are now passing in both input configurations to the --input_configs flag.

eirtrain \
--global_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/inputs_efficientnet_b0.
→˓yaml eir_tutorials/a_using_eir/05_image_tutorial/conf/inputs_resnet18.yaml \
--output_configs eir_tutorials/a_using_eir/05_image_tutorial/conf/output.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_05_is_it_a_hot_
→˓dog_pretrained_combined

Note: Here we are maybe getting ahead of ourselves a little and going straight into combining models. Perhaps only
using EfficientNet performs even better. I will leave that task to you, dear reader.

The training and validation curves I got look like so (I got a bit impatient and stopped the run early):

58 Chapter 2. Documentation

EIR

Definitely looks more stable, and better performance than before. As mentioned earlier, we should be careful about
trusting these results too much as we have a tiny validation set, but since we are doing a tutorial, we’ll allow it!

For the last part of this tutorial, let’s have a look at what the our features extractors focus on for an example image.

First the ResNet18 feature extractor:

2.1. Supervised Learning 59

EIR

And then the EfficientNet-B0 feature extractor:

60 Chapter 2. Documentation

EIR

While it’s definitely more clear to the human eye in the ResNet18 case, both feature extractors seem to be focusing on
the french fries when deciding that this is indeed, not a hot dog.

D - Serving

In this final section, we demonstrate serving our trained image classification model as a web service and interacting
with it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_05_is_it_a_hot_dog_
→˓pretrained_combined/saved_models/tutorial_05_is_it_a_hot_dog_pretrained_combined_model_
→˓400_perf-average=0.9857.pt

2.1. Supervised Learning 61

EIR

Sending Requests

With the server running, we can now send image-based requests. For this model, we send encoded images to different
feature extraction endpoints.

Here’s an example Python function demonstrating this process:

import requests
import base64
from PIL import Image
from io import BytesIO

def encode_image_to_base64(file_path: str) -> str:
with Image.open(file_path) as image:

buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"hot_dog_efficientnet": encode_image_to_base64("path/to/image1.jpg"),
"hot_dog_resnet18": encode_image_to_base64("path/to/image1.jpg")

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

Additionally, you can send requests using bash. Note that this requires preparing the base64-encoded image content in
advance:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

"hot_dog_efficientnet": "[BASE64_ENCODED_IMAGE]",
"hot_dog_resnet18": "[BASE64_ENCODED_IMAGE]"

}'

Analyzing Responses

Before we going into the responses, let’s view the images that were used for predictions:

1040579.jpg

108743.jpg

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s predictions based on the input images.

62 Chapter 2. Documentation

EIR

2.1. Supervised Learning 63

EIR

Listing 38: predictions.json

[
{

"request": {
"hot_dog_efficientnet": "eir_tutorials/a_using_eir/05_image_tutorial/data/

→˓hot_dog_not_hot_dog/food_images/1040579.jpg",
"hot_dog_resnet18": "eir_tutorials/a_using_eir/05_image_tutorial/data/hot_

→˓dog_not_hot_dog/food_images/1040579.jpg"
},
"response": {

"result": {
"hot_dog_output": {

"CLASS": {
"Hot Dog": 0.8565942049026489,
"Not Hot Dog": 0.14340578019618988

}
}

}
}

},
{

"request": {
"hot_dog_efficientnet": "eir_tutorials/a_using_eir/05_image_tutorial/data/

→˓hot_dog_not_hot_dog/food_images/108743.jpg",
"hot_dog_resnet18": "eir_tutorials/a_using_eir/05_image_tutorial/data/hot_

→˓dog_not_hot_dog/food_images/108743.jpg"
},
"response": {

"result": {
"hot_dog_output": {

"CLASS": {
"Hot Dog": 0.07436760514974594,
"Not Hot Dog": 0.9256323575973511

}
}

}
}

}
]

With that, we conclude this image tutorial. Thank you for reading!

64 Chapter 2. Documentation

EIR

2.1.6 06 – Training on binary data

Today, for this tutorial, we will be training deep learning models on raw binary data. In general, it is a good approach
to use inductive bias and domain expertise when training our models, but sometimes we might not have a good idea of
how to present our data, or we simply want to turn off our brains for a bit and throw raw compute at our problem. We
will be using the familiar IMDB reviews dataset, see here for more information about the data. To download the data
and configurations for this part of the tutorial, use this link.

A - Local Transformer

After downloading the data, the folder structure should look like this:

eir_tutorials/a_using_eir/06_raw_bytes_tutorial/
conf

globals.yaml
input.yaml
output.yaml

data
IMDB

IMDB_Reviews
conf
imdb.vocab
imdb_labels.csv

We will use the built-in local transformer model in EIR for this tutorial.

If you have done the previous tutorials you might be used to this, but the configurations are here:

Listing 39: globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_06_imdb_sentiment_binary
valid_size: 0.10
n_saved_models: 1
device: "mps"
checkpoint_interval: 1000
sample_interval: 1000
dataloader_workers: 0
memory_dataset: true
n_epochs: 50
mixing_alpha: 0.5

Listing 40: input.yaml

input_info:
input_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/IMDB/IMDB_Reviews
input_name: imdb_reviews_bytes_base_transformer
input_type: bytes

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 1024

model_config:
(continues on next page)

2.1. Supervised Learning 65

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://drive.google.com/file/d/1u6bkIr9sECkU9z3Veutjn8cx6Mu3GP3Z

EIR

(continued from previous page)

model_type: sequence-default
window_size: 128
embedding_dim: 64
pool: avg
position: "embed"
model_init_config:
num_layers: 4
num_heads: 8

Listing 41: output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/03_sequence_tutorial/data/IMDB/imdb_

→˓labels.csv
output_name: imdb_output
output_type: tabular

output_type_info:
target_cat_columns:

- Sentiment

Note: The model we are training here is relatively deep, so you probably need a GPU to train it in a reasonable amount
of time. If you do not have access to a GPU, try reducing the number of layers and the sequence length.

As usual, we can run the following command to train:

eirtrain \
--global_configs eir_tutorials/a_using_eir/06_raw_bytes_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/06_raw_bytes_tutorial/conf/input.yaml \
--output_configs eir_tutorials/a_using_eir/06_raw_bytes_tutorial/conf/output.yaml

When training, I got the following training curves:

66 Chapter 2. Documentation

EIR

2.1. Supervised Learning 67

EIR

Not so great, but not a complete failure either! When comparing with our previous modelling on this task (see 03
– Sequence Tutorial: Movie Reviews and Peptides), we definitely performed better when doing word level modelling
compared to running on the raw bytes like we are doing here. It can well be we need to configure our model better, or
train it on more data, but for now we will say that adapting the training to the task (in this case NLP) seems to perform
better than training on raw binary data.

Tip: Here we are training on natural language data, but the approach here can in theory be applied to any type of file
on a disk (e.g. images, videos, or other more obscure formats). As we saw above however, good results not guaranteed!

68 Chapter 2. Documentation

EIR

B - Serving

In this section, we’ll guide you through serving our t rained IMDB Reviews Bytes Classification model as a web service
and show you how to interact with it using HTTP requests.

Starting the Web Service

To serve the model, execute the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming HTTP requests.

Here is an example of the command used:

eirdeploy \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_06_imdb_sentiment_binary/
→˓saved_models/tutorial_06_imdb_sentiment_binary_model_15000_perf-average=0.5741.pt

Sending Requests

Once the server is up and running, you can send requests to it. For this binary model, we send text data in byte format
to the model’s endpoint.

Here’s an example Python function to demonstrate how to send a request:

import requests
import numpy as np
import base64

def load_and_encode_data(data_pointer: str) -> str:
arr = np.fromfile(data_pointer, dtype="uint8")
arr_bytes = arr.tobytes()
return base64.b64encode(arr_bytes).decode("utf-8")

def send_request(url: str, encoded_data: str):
payload = {"data": encoded_data}
response = requests.post(url, json=payload)
return response.json()

encoded_data = load_and_encode_data('path/to/textfile.txt')
response = send_request('http://localhost:8000/predict', encoded_data)
print(response)

2.1. Supervised Learning 69

EIR

Analyzing Responses

After sending requests to the served model, you will receive responses that provide insights into the model’s predictions
based on the input text data.

Let’s take a look at some of the text data used for predictions:

Listing 42: 10021_2.txt

The worst movie I have seen since Tera Jadoo Chal Gaya. There is no story, no humor, no␣
→˓nothing! The action sequences seem more like a series of haphazard Akshay Kumar Thumbs-
→˓Up advertisements stitched together. Heavily influenced from The Matrix and Kung-Fu␣
→˓Hustle but very poorly executed.

I did not go a lot of expectations, but␣
→˓watching this movie is an exasperating experience which makes you wonder "What were␣
→˓these guys thinking??!!".

The only thing you might remember after watching␣
→˓it is an anorexic Kareena in a bikini.

The reason why I did not give a␣
→˓rating of '1' is that every time I think I have seen the worst, Bollywood proves me␣
→˓wrong.

Listing 43: 10132_9.txt

In this first episode of Friends, we are introduced to the 6 main characters of the␣
→˓series: Monica Geller,Phoebe Buffay,Chandler Bing,Ross Geller, Joey Tribbiani and␣
→˓eventually Rachel Green .

We discover that Rachel, a rich girl that is␣
→˓Monica's friend from high school times, left her fiancé, Barry, at the altar, since␣
→˓she discovered she didn't love him. She also decides to live with Monica and become␣
→˓independent from her father,getting a new job as a waitress in Central Perk.
<br /
→˓>Ross, for the other hand,discovered his wife is a lesbian and lost her for Susan, her␣
→˓partner. (We see him moving to a new apartment during the episode)

Monica,␣
→˓in this episode, makes out (and eventually sleeps) with Paul "the wine guy", who gave␣
→˓her the excuse of being impotent since he divorced his wife. But in reality, he was␣
→˓just deceiving her.

Ps: I just loooove Joey's and Chandler's haircuts in␣
→˓this first season! =)

Here are examples of the model’s predictions:

Listing 44: predictions.json

[
{

"request": {
"imdb_reviews_bytes_base_transformer": "eir_tutorials/a_using_eir/03_

→˓sequence_tutorial/data/IMDB/IMDB_Reviews/10021_2.txt"
},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.7403308749198914,
"Positive": 0.25966906547546387

}
}

}
}

(continues on next page)

70 Chapter 2. Documentation

EIR

(continued from previous page)

},
{

"request": {
"imdb_reviews_bytes_base_transformer": "eir_tutorials/a_using_eir/03_

→˓sequence_tutorial/data/IMDB/IMDB_Reviews/10132_9.txt"
},
"response": {

"result": {
"imdb_output": {

"Sentiment": {
"Negative": 0.22369135916233063,
"Positive": 0.7763086557388306

}
}

}
}

}
]

This concludes our tutorial, thank you for following along!

2.1.7 07 – Multimodal Training: Combining Tabular, Text, and Image

Here, we will be exploring multi-modal training. That is, training a model on multiple different types of data. For
example, we can train a model to predict some output based on both text and images. We will be using a subset of a
dataset from PetFinder.my a Malaysian website that matches adopters with homeless pets. The dataset contains images
of pets, as well as some text-based description of the pets, and finally some tabular data.

So here, the task will be to predict the speed at which a pet will be adopted. This is formed here as a classification task
with 4 different classes, where the classes are the number of days it took for the pet to be adopted.

To download the data for this part of the tutorial, use this link.

Note: Here we have combined the 5 classes from the original dataset into 4 classes for this tutorial, as one of the
classes was very small compared to the others. However, the original classes are still available in the main tabular file.

After downloading the data, the folder structure should look like this (note that we will create the configuration files
ourselves in the tutorial as we go along):

eir_tutorials/a_using_eir/07_multimodal_tutorial/
conf

07_apx-a_input_description_pretrained.yaml
07_apx-b_mt_input_tabular.yaml
07_apx-b_mt_output.yaml
07_fusion.yaml
07_globals.yaml
07_input_description.yaml
07_input_image.yaml
07_input_tabular.yaml
07_output.yaml

data
(continues on next page)

2.1. Supervised Learning 71

https://www.kaggle.com/competitions/petfinder-adoption-prediction/
https:/www.petfinder.my/
https://drive.google.com/file/d/1DVS-t1ne-TMam8-6gkCz2YzKNjEHEIGr

EIR

(continued from previous page)

descriptions.csv
images
tabular.csv

We are in for a relatively long tutorial, so I’ll try to keep it concise. Let’s get started!

A - Tabular Data

First, we will start training only on the tabular data, which is stored in a CSV file. Note that here the tabular data has
been transposed, for visual purposes.

Here are the configurations files for the tabular data:

Listing 45: 07_globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_07_multimodal_run
valid_size: 0.10
memory_dataset: true
checkpoint_interval: 200
sample_interval: 200
n_epochs: 25
device: "cpu"
lr: 5.0e-04
optimizer: adamw
gradient_clipping: 1.0
early_stopping_patience: 5
early_stopping_buffer: 2000
compute_attributions: false
attributions_every_sample_factor: 10
max_attributions_per_class: 512
mixing_alpha: 0.2

Listing 46: 07_input_tabular.yaml

input_info:
input_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/tabular.csv
input_name: pets_tabular
input_type: tabular

input_type_info:
input_cat_columns:

- Type
- Breed1
- Breed2
- Gender
- Color1
- Color2
- Color3
- MaturitySize
- State
- FurLength
- Vaccinated

(continues on next page)

72 Chapter 2. Documentation

EIR

(continued from previous page)

- Dewormed
- Sterilized
- Health
- Fee

input_con_columns:
- Age
- Quantity
- VideoAmt
- PhotoAmt

model_config:
model_type: tabular

Listing 47: 07_fusion.yaml

model_config:
layers:
- 2
rb_do: 0.25

model_type: mlp-residual

Listing 48: 07_output.yaml

output_info:
output_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/tabular.csv
output_name: pet_adoption
output_type: tabular

output_type_info:
target_cat_columns:

- AdoptionSpeed
cat_label_smoothing: 0.1

model_config:
model_init_config:
layers:
- 2

fc_do: 0.25
rb_do: 0.25
stochastic_depth_p: 0.25

As usual, we can run the following command to train:

eirtrain \
--global_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_globals.yaml \
--input_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_tabular.
→˓yaml \
--fusion_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_fusion.yaml \
--output_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_output.yaml \
--07_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_07a_
→˓multimodal_tabular \

(continues on next page)

2.1. Supervised Learning 73

EIR

(continued from previous page)

--07_globals.compute_attributions=true

Note: Here we are setting the --compute_attributions=true parameter, from the command line, to get the
integrated gradients attributions of the model w.r.t. the tabular input data.

When training, I got the following training curve:

Now, since we set the --compute_attributions=true parameter, we can have a look at the attributions (notice in the
global configuration, we set compute_attributions_ever_sample_factor=10, which means they are computed
every 10 sampling iterations, i.e. 200 * 10 = 2000 training iterations). Specifically, we check the file under samples/
4000/attributions/ in the results folder. First, we can have a look at the feature importance for the tabular
data.

74 Chapter 2. Documentation

EIR

Here we can see that Breed1 is the feature that most strongly influenced the model’s prediction. In the attributions
folder, we can also see how the inputs influence the model towards a specific class. Here, we will look at how the
Breed1 input values influence the model towards the class “D: 100+ Days”, meaning the pet was adopted after 100
days:

2.1. Supervised Learning 75

EIR

So from this it seems that, unfortunately, mixed breed pets are less likely to be adopted (that is, the value “Mixed
Breed” pushes the model towards making the “D: 100+ Days” prediction). This does perhaps make intuitive sense,
but keep in mind that this is specifically analyzing the behavior of the model, and not guaranteed to be true, causal
relationships. Additionally, this is something that could likely be discovered with simpler methods, such as a logistic
regression model. However, this is just an example of how to use the integrated gradients attributions to analyze the
deep-learning model.

B - Tabular + Text Data

Now, we will train the model on both tabular and text data. The text data in question are descriptions of the cute pets,
which are stored in a CSV file.

Note: When reading sequence data from a CSV file, the file must follow the specification of having two columns, one
containing the sequence IDs (“ID”), and the other containing the sequence data (“Sequence”). Note that the names of
these columns are strictly enforced.

First, let’s take a look at an example from the text data:

Nibble is a 3+ month old ball of cuteness. He is energetic and playful. I rescued a␣
→˓couple of cats a few months ago but could not get them neutered in time as the clinic␣
→˓was fully scheduled. The result was this little kitty. I do not have enough space and␣
→˓funds to care for more cats in my household. Looking for responsible people to take␣
→˓over Nibble's care.

So to train on both tabular and text data, we will need to specify a configuration for the text data as well:

input_info:
input_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/descriptions.csv
input_name: pet_descriptions
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: "average"
split_on: " "
min_freq: 2
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
(continues on next page)

76 Chapter 2. Documentation

EIR

(continued from previous page)

model_type: sequence-default
embedding_dim: 64
position: embed
pool: avg
model_init_config:
num_heads: 4
dropout: 0.2

Then to train, we simply include that configuration file under the --input_configs parameter:

eirtrain \
--global_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_globals.yaml \
--input_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_tabular.
→˓yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_description.yaml \
--fusion_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_fusion.yaml \
--output_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_output.yaml \
--07_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_07b_
→˓multimodal_tabular_description

Now, when training, we get the following training curve:

So here we can see that the model seems to perform slightly better when trained on both tabular and text data. We also
start to see possible signs of overfitting, as the training curve starts to diverge from the validation curve.

2.1. Supervised Learning 77

EIR

C - Tabular + Text + Image Data

Now, we will train the model on all three types of data: tabular, text, and image. The image data is stored in a folder,
where each image is stored in a separate file.

As before, let’s have a quick look at an example image:

Configuration file for the image data:

input_info:
input_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/images
input_name: cute_pet_images
input_type: image

input_type_info:
mixing_subtype: "cutmix"
size:
- 128

model_config:
model_type: "resnet18"
pretrained_model: True
freeze_pretrained_model: True

78 Chapter 2. Documentation

EIR

Note: Here we are using a pre-trained ResNet-18 model to extract the image features. We are using the
--pretrained_model parameter to specify the that we want to use pre-trained weights. We are also using the
--freeze_pretrained_model parameter to freeze the weights of the pre-trained model, so that they are not updated
during training.

And then we can train the model on all three types of data:

eirtrain \
--global_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_globals.yaml \
--input_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_tabular.
→˓yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_description.yaml␣
→˓eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_image.yaml \
--fusion_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_fusion.yaml \
--output_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_output.yaml \
--07_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_07c_
→˓multimodal_tabular_description_image

Note: Here we are setting the device parameter to cuda:0, to train on the GPU. If you do not have a GPU, you can
skip this parameter, or set it to cpu. Note that training on the CPU will likely be much slower, especially now that we
are training on images as well.

When training, we get the following training curve:

2.1. Supervised Learning 79

EIR

So in this case, including the image data does not seem to improve the performance of the model further compared to
the model trained on the tabular and text data. However, it does seem that the validation performance more quickly
reaches peak performance when including the image data. It might be interesting to try training on the image data
alone, to how much performance we can get from that. Furthermore, one could try unfreezing the pre-trained model,
and see if that improves the performance. However, this tutorial is getting long enough already, so we will leave that
as an exercise for those interested.

D - Serving

This section guides you through serving a multimodal model that combines tabular data, text descriptions, and images.
We’ll demonstrate how to interact with this served model using HTTP requests.

Starting the Web Service

To serve the multimodal model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained multimodal model. This command starts a web service
that listens for incoming HTTP requests.

Example of the serving command:

80 Chapter 2. Documentation

EIR

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_07c_multimodal_tabular_
→˓description_image/saved_models/tutorial_07c_multimodal_tabular_description_image_model_
→˓2200_perf-average=0.4133.pt

Preparing and Sending Requests

Once the server is running, you can send requests containing tabular data, text descriptions, and image paths. Here’s
an example Python function to demonstrate this process:

import requests
import json

def send_request(url: str, request_data: dict):
response = requests.post(url, json=request_data)
return response.json()

request_data = {
"pets_tabular": {

"Type": "Cat",
"Name": "Nibble",
"Age": 1.0,
"Breed1": "Tabby",
...

},
"pet_descriptions": "A super cute tabby cat!!!",
"cute_pet_images": "path/to/image.jpg"

}

response = send_request('http://localhost:8000/predict', request_data)
print(response)

Analyzing Responses

After sending requests to the served model, you will receive responses that provide a prediction based on the combined
data (tabular, description, and image).

Let’s take a look at some example predictions made by the model:

Listing 49: predictions.json

[
{

"request": {
"pets_tabular": {

"Type": "Cat",
"Name": "Nibble",
"Age": 1.0,
"Breed1": "Tabby",
"Breed2": "0",
"Gender": "Male",

(continues on next page)

2.1. Supervised Learning 81

EIR

(continued from previous page)

"Color1": "Black",
"Color2": "White",
"Color3": "0",
"MaturitySize": "Small",
"FurLength": "Short",
"Vaccinated": "No",
"Dewormed": "No",
"Sterilized": "No",
"Health": "Healthy",
"Quantity": 1.0,
"Fee": "Free",
"State": "Selangor",
"VideoAmt": 0.0,
"PhotoAmt": 1.0

},
"pet_descriptions": "A super cute tabby cat!!!",
"cute_pet_images": "eir_tutorials/a_using_eir/07_multimodal_tutorial/data/

→˓images/86e1089a3.jpg"
},
"response": {

"result": {
"pet_adoption": {

"AdoptionSpeed": {
"A: 0-7 Days": 0.5612660050392151,
"B: 8-30 Days": 0.2135147899389267,
"C: 31-90 Days": 0.10258349031209946,
"D: 100+ Days": 0.12263575941324234

}
}

}
}

},
{

"request": {
"pets_tabular": {

"Type": "Cat",
"Name": "Nibble",
"Age": 5.0,
"Breed1": "Tabby",
"Breed2": "0",
"Gender": "Male",
"Color1": "Black",
"Color2": "White",
"Color3": "0",
"MaturitySize": "Small",
"FurLength": "Short",
"Vaccinated": "No",
"Dewormed": "No",
"Sterilized": "No",
"Health": "Healthy",
"Quantity": 1.0,
"Fee": "Free",

(continues on next page)

82 Chapter 2. Documentation

EIR

(continued from previous page)

"State": "Selangor",
"VideoAmt": 0.0,
"PhotoAmt": 1.0

},
"pet_descriptions": "A super cute tabby cat!!!",
"cute_pet_images": "eir_tutorials/a_using_eir/07_multimodal_tutorial/data/

→˓images/86e1089a3.jpg"
},
"response": {

"result": {
"pet_adoption": {

"AdoptionSpeed": {
"A: 0-7 Days": 0.5546148419380188,
"B: 8-30 Days": 0.21321046352386475,
"C: 31-90 Days": 0.10370028018951416,
"D: 100+ Days": 0.12847435474395752

}
}

}
}

},
{

"request": {
"pets_tabular": {

"Type": "Cat",
"Name": "Nibble",
"Age": 10.0,
"Breed1": "Tabby",
"Breed2": "0",
"Gender": "Male",
"Color1": "Black",
"Color2": "White",
"Color3": "0",
"MaturitySize": "Small",
"FurLength": "Short",
"Vaccinated": "No",
"Dewormed": "No",
"Sterilized": "No",
"Health": "Healthy",
"Quantity": 1.0,
"Fee": "Free",
"State": "Selangor",
"VideoAmt": 0.0,
"PhotoAmt": 1.0

},
"pet_descriptions": "A super cute tabby cat!!!",
"cute_pet_images": "eir_tutorials/a_using_eir/07_multimodal_tutorial/data/

→˓images/86e1089a3.jpg"
},
"response": {

"result": {
"pet_adoption": {

(continues on next page)

2.1. Supervised Learning 83

EIR

(continued from previous page)

"AdoptionSpeed": {
"A: 0-7 Days": 0.5458986759185791,
"B: 8-30 Days": 0.2128952294588089,
"C: 31-90 Days": 0.10505900532007217,
"D: 100+ Days": 0.13614711165428162

}
}

}
}

},
{

"request": {
"pets_tabular": {

"Type": "Cat",
"Name": "Nibble",
"Age": 3000.0,
"Breed1": "Tabby",
"Breed2": "0",
"Gender": "Male",
"Color1": "Black",
"Color2": "White",
"Color3": "0",
"MaturitySize": "Small",
"FurLength": "Short",
"Vaccinated": "No",
"Dewormed": "No",
"Sterilized": "No",
"Health": "Healthy",
"Quantity": 1.0,
"Fee": "Free",
"State": "Selangor",
"VideoAmt": 0.0,
"PhotoAmt": 1.0

},
"pet_descriptions": "A super cute tabby cat!!!",
"cute_pet_images": "eir_tutorials/a_using_eir/07_multimodal_tutorial/data/

→˓images/86e1089a3.jpg"
},
"response": {

"result": {
"pet_adoption": {

"AdoptionSpeed": {
"A: 0-7 Days": 0.08935897797346115,
"B: 8-30 Days": 0.12761463224887848,
"C: 31-90 Days": 0.17728523910045624,
"D: 100+ Days": 0.6057411432266235

}
}

}
}

}
]

84 Chapter 2. Documentation

EIR

You can see that the inputs to the models are basically identical, except that we are varying the age of the pet. The
general trend is that the older the pet, the longer it takes to be adopted, according to the model. This, unfortunately, is
perhaps not surprising and is particularly visible when we increase the age to the extreme of 3000 months (250 years)
– I mean, who would not want to adopt a 250 year old sage cat? :)

While not visible in the JSON above, here is the image used:

86e1089a3.jpg

That is it for the main part of the tutorial. I hope you enjoyed it! Below are a couple of appendixes with some additional
experiments that might be interesting.

Appendix A - Adding a pre-trained text feature extractor

In this appendix, we will add a pre-trained text feature extractor in addition to the one we already have. We will
be using a pre-trained Tiny BERT model (see (see 04 – Established Architectures and Pretrained Models for more
information). It is not certain whether this will improve the performance of the model, but the idea is more to showcase
some functionalities of the framework.

Here is the configuration file for the pre-trained text feature extractor:

input_info:
input_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/descriptions.csv

(continues on next page)

2.1. Supervised Learning 85

EIR

(continued from previous page)

input_name: pet_descriptions_pretrained
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 64
split_on: " "
min_freq: 10

model_config:
model_type: "prajjwal1/bert-tiny"
pretrained_model: true
freeze_pretrained_model: true
position: embed
pool: avg

The command:

eirtrain \
--global_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_globals.yaml \
--input_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_tabular.
→˓yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_description.yaml␣
→˓eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_apx-a_input_description_
→˓pretrained.yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_image.
→˓yaml \
--fusion_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_fusion.yaml \
--output_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_output.yaml \
--07_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_07-apx-a_
→˓multimodal_tabular_description_pretrained

The training curve:

86 Chapter 2. Documentation

EIR

So it seems that the pre-trained text feature extractor does not help, and likely we are even overfitting a bit more!

Appendix B - Multi-modal, multi-task learning

In this part, we will train the model to not only predict the adoption speed, but also the pet’s age and number of pets in
the image. For this, we have to modify the tabular input and output configurations:

input_info:
input_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/tabular.csv
input_name: pets_tabular
input_type: tabular

input_type_info:
input_cat_columns:

- Type
- Breed1
- Breed2
- Gender
- Color1
- Color2
- Color3
- MaturitySize
- State

(continues on next page)

2.1. Supervised Learning 87

EIR

(continued from previous page)

- FurLength
- Vaccinated
- Dewormed
- Sterilized
- Health
- Fee

input_con_columns:
- VideoAmt
- PhotoAmt

model_config:
model_type: tabular

output_info:
output_source: eir_tutorials/a_using_eir/07_multimodal_tutorial/data/tabular.csv
output_name: pet_adoption
output_type: tabular

output_type_info:
target_cat_columns:

- AdoptionSpeed
target_con_columns:
- Age
- Quantity

cat_label_smoothing: 0.1

Note that we have moved the features that we want to predict from the input configuration to the output configuration.

The command:

eirtrain \
--global_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_globals.yaml \
--input_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_apx-b_mt_input_
→˓tabular.yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_input_
→˓description.yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_apx-a_input_
→˓description_pretrained.yaml eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_
→˓input_image.yaml \
--fusion_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_fusion.yaml \
--output_configs eir_tutorials/a_using_eir/07_multimodal_tutorial/conf/07_apx-b_mt_
→˓output.yaml \
--07_globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_07-apx-b_
→˓multimodal_tabular_description_multi_task

First we can have a look at the average performance:

88 Chapter 2. Documentation

EIR

Note: The average performance by default is the average of the MCC, ROC-AUC and average precision (AP) for
categorical targets and 1.0-LOSS, PCC, R2 for continuous targets.

So, since we are using different inputs and outputs in this task, we cannot compare directly to the previous results.
However, we can see that the model seems to be able to learn to predict the 3 different targets fairly well.

The training curves for the adoption speed, age and quantity:

2.1. Supervised Learning 89

EIR

90 Chapter 2. Documentation

EIR

2.1. Supervised Learning 91

EIR

Finally, we can also look at the regression predictions by checking the samples folder for the Age and Quantity
targets. Here are a couple of examples:

92 Chapter 2. Documentation

EIR

2.1. Supervised Learning 93

EIR

So in the case of quantity, it is expected that the model gets some of the predictions wrong, since in our parsed data
we are only using randomly chosen one image, but the original data includes multiple images (it can also be that it can
learn some of this from the descriptions). However, the model seems to be able to predict the quantity fairly well, and
same for the age.

2.1.8 08 – Training on arrays with CNN, LCL, and Transformer Models

In this tutorial, we will be looking at the built in support for training models on structured arrays in EIR. Here, structured
refers to the arrays all having the same shape, and arrays refers to the fact that the data is stored in a numpy array. We
will be using the same data as we did in 01 – Genotype Tutorial: Ancestry Prediction, but instead treating them as
general arrays instead of genotypes. Currently, the array functionality in EIR is built to handle 1, 2 and 3 dimensional
arrays. As in the genotype tutorial, we will be using data processed from the Human Origins dataset. To download the
data and configurations for this part of the tutorial, use this link.

94 Chapter 2. Documentation

https://www.nature.com/articles/nature13673
https://drive.google.com/file/d/1p-RfWqPiYGcmQI7LM60fXkIRSS5AFXM8

EIR

A - Data

After downloading the data, the folder structure should look like this:

eir_tutorials/a_using_eir/08_array_tutorial/
conf

globals.yaml
input_1d_cnn.yaml
input_1d_lcl.yaml
input_1d_transformer.yaml
input_2d_cnn.yaml
input_2d_lcl.yaml
input_2d_transformer.yaml
input_3d_cnn.yaml
input_3d_lcl.yaml
input_3d_transformer.yaml
outputs.yaml

data
processed_sample_data

arrays_1d
arrays_2d
arrays_3d
human_origins_labels.csv

processed_sample_data.zip

Besides the configurations, there are 3 folders there storing the genotype arrays, with each folder corresponding to a
different dimensionality (although all the versions are generated from the same base data). The arrays in the 1D folder
encodes the reference, heterozygous, alternative and missing genotypes as 0, 1, 2 and 3 respectively. The 2D arrays
encode the same information, as a one-hot encoded array. Finally, the 3D arrays contain the same one-hot encoding as
the 2D case, but with a flipped copy of the array as the second channel. This is all perhaps a bit redundant, but it’s just
for this tutorial.

B - Training

Here are the configurations for the 1D case:

Listing 50: globals.yaml

output_folder: eir_tutorials/tutorial_runs/a_using_eir/tutorial_08_run
checkpoint_interval: 200
sample_interval: 200
n_epochs: 20
memory_dataset: True
device: "mps"

Listing 51: input_1d_cnn.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_1d
input_name: genotype_as_array
input_type: array

(continues on next page)

2.1. Supervised Learning 95

EIR

(continued from previous page)

model_config:
model_type: cnn
model_init_config:
kernel_height: 1
kernel_width: 4

Listing 52: outputs.yaml

output_info:
output_name: ancestry_output
output_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓human_origins_labels.csv
output_type: tabular

output_type_info:
target_cat_columns:

- Origin

Important: The CNN functionality for arrays is currently experimental, and might change in later versions of EIR.

We will be training both the CNN, LCL (locally-connected-layers) and transformer models, here is an example config-
uration for the LCL model:

Listing 53: input_1d_lcl.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_1d
input_name: genotype_as_array
input_type: array

model_config:
model_type: lcl
model_init_config:
kernel_width: 4
first_kernel_expansion: 1

Important: While there is a lot of similarity between training the LCL models here and the genotype models in 01
– Genotype Tutorial: Ancestry Prediction, there are some important differences. The most important is how the LC
layers are applied over the input dimensions. Considering the 2D case, where we have one-hot encoded arrays with
shape (4, n_SNPs). In the genotype case, the kernel_width parameter in the LC layer will be applied in colum-
order, meaning a width of 8 will cover the first 2 SNPs. In the array case, the kernel_width parameter is applied in
row-order, meaning a width of 8 will cover the first row of the first 8 SNPs.

Here is an example configuration for the transformer model:

Listing 54: input_1d_transformer.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_1d
(continues on next page)

96 Chapter 2. Documentation

EIR

(continued from previous page)

input_name: genotype_as_array
input_type: array

model_config:
model_type: transformer
model_init_config:
embedding_dim: 32
patch_size:
- 1
- 1
- 4

Important: For the transformer models, the patch_size parameter is used to determine the size of the patches that
are fed into the transformer. The total number of input elements must be divisible by the patch size. The order follows
the same convention as PyTorch, meaning CxHxW. For 1D and 2D inputs, use a size of 1 for the redundant dimensions
when specifying the patch size.

As usual, we can run the following command to train for the CNN, LCL and Tranformer cases:

eirtrain \
--global_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/input_1d_cnn.yaml \
--output_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/outputs.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_08_run_cnn-1d

eirtrain \
--global_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/input_1d_lcl.yaml \
--output_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/outputs.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_08_run_lcl-1d

eirtrain \
--global_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/globals.yaml \
--input_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/input_1d_transformer.
→˓yaml \
--output_configs eir_tutorials/a_using_eir/08_array_tutorial/conf/outputs.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/a_using_eir/tutorial_08_run_
→˓transformer-1d

For the 2D and 3D cases, here are the configurations:

Listing 55: input_2d_cnn.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_2d
input_name: genotype_as_array
input_type: array

model_config:
model_type: cnn

(continues on next page)

2.1. Supervised Learning 97

EIR

(continued from previous page)

model_init_config:
kernel_height: 1
first_kernel_expansion_height: 4
kernel_width: 4

Listing 56: input_2d_lcl.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_2d
input_name: genotype_as_array
input_type: array

model_config:
model_type: lcl
model_init_config:
kernel_width: 8
first_kernel_expansion: 1

Listing 57: input_2d_transformer.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_2d
input_name: genotype_as_array
input_type: array

model_config:
model_type: transformer
model_init_config:
embedding_dim: 32
patch_size:
- 1
- 4
- 4

Listing 58: input_3d_cnn.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_3d
input_name: genotype_as_array
input_type: array

model_config:
model_type: cnn
model_init_config:
kernel_height: 1
first_kernel_expansion_height: 4
kernel_width: 4

98 Chapter 2. Documentation

EIR

Listing 59: input_3d_lcl.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_3d
input_name: genotype_as_array
input_type: array

model_config:
model_type: lcl
model_init_config:
kernel_width: 16
first_kernel_expansion: 1

Listing 60: input_3d_transformer.yaml

input_info:
input_source: eir_tutorials/a_using_eir/08_array_tutorial/data/processed_sample_data/

→˓arrays_3d
input_name: genotype_as_array
input_type: array

model_config:
model_type: transformer
model_init_config:
embedding_dim: 32
patch_size:
- 2
- 4
- 4

Note: For the CNN model, you might be wondering about the kernel_height and
first_kernel_expansion_height parameters. The kernel_height parameter refers to the “base” kernel
height that is used throughout the model. In the 2D case, we are working with 4xN arrays, and want the kernels in
the first layer to be able to cover the entire height of the array. Successive kernels will then operate on a height of 1.
Coming back to the parameters, the first_kernel_expansion_height=4 is indicating that the first layer should
have a kernel height of 4, and the kernel_height=1 is indicating that the successive layers should have a kernel
height of 1.

After training, I got the following validation results:

2.1. Supervised Learning 99

EIR

So, here it seems that the transformer models and LCL models are performing a bit better than the CNN models, with
the transformers being the best. However, we are training for a relatively short time, and one might get better results
by e.g. increasing the number of filters in the CNN case.

C - Serving

In this final section, we demonstrate serving our trained model for 3D array data as a web service and interacting with
it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/a_using_eir/tutorial_08_run_transformer-3d/
→˓saved_models/tutorial_08_run_transformer-3d_model_600_perf-average=0.8977.pt

100 Chapter 2. Documentation

EIR

Sending Requests

With the server running, we can now send requests for 3D array data. The data is encoded in base64 before sending.

Here’s an example Python function demonstrating this process:

import requests
import numpy as np
import base64

def encode_array_to_base64(file_path: str) -> str:
array_np = np.load(file_path)
array_bytes = array_np.tobytes()
return base64.b64encode(array_bytes).decode('utf-8')

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"genotype_as_array": encode_array_to_base64("path/to/array_file.npy")

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

Analyzing Responses

After sending requests to the served model, the responses might look something like this:

Listing 61: predictions.json

[
{

"request": {
"genotype_as_array": "eir_tutorials/a_using_eir/08_array_tutorial/data/

→˓processed_sample_data/arrays_3d/A374.npy"
},
"response": {}

},
{

"request": {
"genotype_as_array": "eir_tutorials/a_using_eir/08_array_tutorial/data/

→˓processed_sample_data/arrays_3d/Ayodo_468C.npy"
},
"response": {}

},
{

"request": {
"genotype_as_array": "eir_tutorials/a_using_eir/08_array_tutorial/data/

→˓processed_sample_data/arrays_3d/NOR146.npy"
},

(continues on next page)

2.1. Supervised Learning 101

EIR

(continued from previous page)

"response": {}
}

]

If you made it this far, thanks for reading! I hope you found this tutorial useful.

2.2 Sequence Generation

2.2.1 01 – Sequence Generation: Generating Movie Reviews

In this tutorial, we will look into the built-in support in EIR for sequence generation tasks (similar to what GPT does).
Sequences can represent various types of data such as time series, sentences, genetic information, and more. This
technique allows us to generate new, meaningful sequences based on patterns learned from the training data.

We will be using the same dataset we used in the 03 – Sequence Tutorial: Movie Reviews and Peptides: the IMDB
reviews dataset. However, instead of classifying the reviews, our goal this time will be to generate new movie reviews.

Note: This tutorial assumes you are familiar with the basics of EIR, and have gone through the 01 – Genotype Tutorial:
Ancestry Prediction and the 03 – Sequence Tutorial: Movie Reviews and Peptides. Not required, but recommended.

A - Data

As in the 03 – Sequence Tutorial: Movie Reviews and Peptides, we will be using the IMDB reviews dataset. See here
for more information about the data. To download the data, use this link.

After downloading the data, the folder structure should look like this (we will look at the configs in a bit):

eir_tutorials/c_sequence_output/01_sequence_generation
conf

fusion.yaml
globals.yaml
output.yaml
output_bpe.yaml
output_test.yaml

data
IMDB

IMDB_Reviews
conf
imdb.vocab
imdb_labels.csv

102 Chapter 2. Documentation

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://drive.google.com/file/d/1u6bkIr9sECkU9z3Veutjn8cx6Mu3GP3Z

EIR

B - Training

Training is almost the same as when doing supervised learning, with a couple of changes in our configurations. The
biggest difference is perhaps that when doing pure sequence generation tasks (i.e., there are no auxiliary inputs), we do
not need to specify an input configuration, we only have a global, fusion and output config:

The global config is does not introduce any new parameters:

Listing 62: globals.yaml

output_folder: eir_tutorials/tutorial_runs/c_sequence_output/01_sequence_generation
valid_size: 500
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
memory_dataset: true
n_epochs: 100
batch_size: 256
device: "mps"

Note: Above I am using the mps device for training, which is in some Macs. If you are using a different device, you
can change it to cpu or e.g., cuda:0.

When we are doing only sequence generation (i.e., that is the only task), the only supported fusion module is “pass-
through” currently, this is because each sequence generation head performs its own fusion. Therefore, customizing the
fusion module with settings we have seen before (e.g., setting the model type to “mlp-residual”) would not have any
effect. However, if you are doing sequence generation as one of multiple tasks, where at least one of the tasks is a
supervised prediction, you can customize the fusion module. However, it will only be used for the supervised task, the
sequence generation task will still use the “pass-through” fusion, which is automatically added.

Listing 63: fusion.yaml

model_type: "pass-through"

Now for the output, the structure is very similar to what we have seen before, but with a couple of changes. The first
difference is the output_type, here instead of tabular, we set it to sequence. The other difference is that we now
have a sampling_config, specific to sequence generation. This allows us to configure various parameters related to
the sampling process during training, where sequences are generated every sample_interval.

Another thing of note is that here we are training a character-level model, as split_on is set to "".

Listing 64: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/01_sequence_generation/data/IMDB/IMDB_

→˓Reviews
output_name: imdb_output
output_type: sequence

output_type_info:
max_length: 64
split_on: ""
sampling_strategy_if_longer: "uniform"
min_freq: 1

(continues on next page)

2.2. Sequence Generation 103

EIR

(continued from previous page)

model_config:
embedding_dim: 64
model_init_config:
num_layers: 6

sampling_config:
generated_sequence_length: 128
n_eval_inputs: 1

manual_inputs:
- imdb_output: "This movie is the most"

- imdb_output: "Steven"

After setting up the configs, training is similar to what we have seen before:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/globals.
→˓yaml \
--fusion_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/fusion.yaml␣
→˓\
--output_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/output_bpe.
→˓yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/c_sequence_output/01_sequence_
→˓generation_bpe

I got the following results:

104 Chapter 2. Documentation

EIR

However, the most interesting part is not the training curve, but the generated sequences. If we look in the familiar
samples folder, we can see the generated sequences. At iteration 500, they are mostly gibberish:

Listing 65: Auto-generated sequence at iteration 500

he anos e atth sthas singulit, tre is ame wo heth chesolowre ad isse woffoutrtong sond␣
→˓ton ifieers ant ar d whery, chid e e her

Listing 66: Manually sequence at iteration 500 with custom prompt

This movie is the mostove t ove arovetally ar of wolid t aso s malotrindis, mans d,␣
→˓cthak. gecthestin Alesean once avectiet trth

However, at iteration 9500, we can see that the model is starting to generate more meaningful sequences:

Listing 67: Auto-generated sequence at iteration 9500

ng happening out the film is not the class of the acting of the film like this film,␣
→˓everything for my favourite effects and if

Listing 68: Manually sequence at iteration 9500 with custom prompt

This movie is the most action cast who did watch a great dialogue, she gets a poor story␣
→˓better movie into like this comprofessi

2.2. Sequence Generation 105

EIR

C - Prediction: Creating new sequences with a trained model

Now that we have trained our model, we can use it to generate new sequences. Similarly to the process when we are
doing supervised prediction, we use the eirpredict command, with a couple of minor changes now that we are doing
sequence generation.

The first change can be seen in the output configuration. Here we have a file called output_test.yaml, which is
similar to the output.yaml we used for training, but notice the change in output_source:

Listing 69: output_test.yaml

output_info:
output_source: null
output_name: imdb_output
output_type: sequence

output_type_info:
max_length: 64
split_on: ""
sampling_strategy_if_longer: "uniform"
min_freq: 1

model_config:
embedding_dim: 64
model_init_config:
num_layers: 6

sampling_config:
generated_sequence_length: 64
n_eval_inputs: 10

manual_inputs:
- imdb_output: "This movie is the most"

- imdb_output: "Steven"

Here we have null for the output_source, which is because we do not have any concrete inputs for the sequence
generation task. Now, to control the sequence generation prediction functionality, we are using the sampling_config
in the configuration above, which allows to e.g. specify the generated sequence length, now many sequences to generate
from an empty prompt (n_eval_inputs) and finally generate sequences from custom prompts (manual_inputs).

Now we execute our eirpredict command:

eirpredict \
--global_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/globals.
→˓yaml \
--fusion_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/fusion.yaml␣
→˓\
--output_configs eir_tutorials/c_sequence_output/01_sequence_generation/conf/output_test.
→˓yaml \
--model_path eir_tutorials/tutorial_runs/c_sequence_output/01_sequence_generation/saved_
→˓models/01_sequence_generation_model_9500_perf-average=-0.3847.pt \
--output_folder eir_tutorials/tutorial_runs/c_sequence_output/01_sequence_generation/
→˓test_results

106 Chapter 2. Documentation

EIR

This will save our results under the paths specified in the output_folder parameter, containing both the auto-
generated and manually generated sequences.

Here is an example of an auto-generated sequence:

Listing 70: Prediction auto-generated sequence 1

done at a hold feeling that doesn't love awful. But it was so a

And here are the manually generated sequences with our custom prompts:

Listing 71: Prediction manually generated sequence 1

This movie is the most camera character with an acting fun thing

Listing 72: Prediction manually generated sequence 2

Steven Alimon from this about the world of emotions and they bot

While our generated reviews are far from realistic, they do show that the model is learning to generate sequences that
are somewhat meaningful.

E - Sequence Generation with BPE Tokenization

Now that we have seen how to do sequence generation with a character-level model, let’s see how we can do it with a
token-level model. This time, we will use the IMDB dataset, but with an implementation of BPE (Byte Pair Encoding)
tokenization.

BPE, as detailed in this paper, is a sub-word tokenization method that progressively learns the most common sequences
of characters (or bytes) to form an efficient set of tokens.

As we’ll see, using BPE tokenization allows us to generate longer sequences than with the character model.

To use it, a couple of changes are needed in the output configuration:

Listing 73: output_bpe.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/01_sequence_generation/data/IMDB/IMDB_

→˓Reviews
output_name: imdb_output
output_type: sequence

output_type_info:
max_length: 32
split_on: null
tokenizer: "bpe"
adaptive_tokenizer_max_vocab_size: 1024
sampling_strategy_if_longer: "uniform"
min_freq: 1

model_config:
embedding_dim: 64
model_init_config:
num_layers: 2

(continues on next page)

2.2. Sequence Generation 107

https://arxiv.org/abs/1508.07909v5

EIR

(continued from previous page)

sampling_config:
generated_sequence_length: 64
n_eval_inputs: 1

manual_inputs:
- imdb_output: "This movie is the most"

- imdb_output: "Steven"

Since the tokenizer can operate on the raw text, we set split_on to null, and we can also control the maximum
vocabulary size with adaptive_tokenizer_max_vocab_size parameter.

Here is the training curve I got for this model:

Here are the auto-generated and manually generated sequences at iteration 500:

Listing 74: Auto-generated sequence at iteration 500

als sing d. Cals to making of it to sandly pic. The mapical nos that the cursing in I don
→˓'t bave this film is fen the ters to then of the lobangiting is bri

108 Chapter 2. Documentation

EIR

Listing 75: Manually sequence at iteration 500 with custom prompt

This movie is the mostitob Lredy in cy is fes the movie a drie it that the donly a movie␣
→˓was pole a ceing of hy the movie a shiilors of s, the bothed that I don't wark

And as before, at iteration 9500, we can see that the model is starting to generate more meaningful sequences:

Listing 76: Auto-generated sequence at iteration 9500

push is also a pretty humanizing job (I remembered to do anyone who are the same guy who␣
→˓would get a home to do not sit up to call themselves for an exception of TV. and this␣
→˓is one of the

Listing 77: Manually sequence at iteration 9500 with custom prompt

This movie is the mostly gone and power of Sarton (Dean Shouse Farts), Marton Rairedons,␣
→˓that she gets inside a classic nonsense and teacher both

Hopefully this tutorial has given you a good overview of how to use the sequence generation functionality in EIR.
Thank you for reading!

F - Serving

In this final section, we demonstrate serving our trained model for sequence generation as a web service and interacting
with it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/c_sequence_output/01_sequence_generation/saved_
→˓models/01_sequence_generation_model_9500_perf-average=-0.3847.pt

Important: Currently neither serving nor predicting works with the “bpe” tokenizer due to a bug / design decision in
the library that implements it, see here for more information.

2.2. Sequence Generation 109

https://github.com/huggingface/tokenizers/issues/566

EIR

Sending Requests

With the server running, we can now send requests for generating sequences based on initial text prompts.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

example_requests = [
{"imdb_output": "This movie was great, I have to say "},
{"imdb_output": "This movie was terrible, I "},

]

for payload in example_requests:
response = send_request('http://localhost:8000/predict', payload)
print(f"Prompt: {payload['imdb_output']}")
print(f"Generated text: {response}\n")

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

"imdb_output": "This movie was great, I have to say "
}'

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses demonstrate the model’s
ability to generate text sequences based on the provided prompts.

Listing 78: predictions.json

[
{

"request": {
"imdb_output": "This movie was great, I have to say "

},
"response": {

"result": {
"imdb_output": "This movie was great, I have to say it can have been␣

→˓funny, scared after watching a better film about any trying to be a real ca"
}

}
},
{

"request": {
(continues on next page)

110 Chapter 2. Documentation

EIR

(continued from previous page)

"imdb_output": "This movie was terrible, I "
},
"response": {

"result": {
"imdb_output": "This movie was terrible, I won't see the rest of the the-

→˓written with some way, the worst movies are beautiful. A funny of the f"
}

}
},
{

"request": {
"imdb_output": "This movie was so "

},
"response": {

"result": {
"imdb_output": "This movie was so hide about shows to watch about her␣

→˓rating a good family, his point in figure. The day characters were forgett"
}

}
},
{

"request": {
"imdb_output": "This movi"

},
"response": {

"result": {
"imdb_output": "This movie can be go even have to make you something␣

→˓hopefully force to say how it's setting it and to see this so to so miss th"
}

}
},
{

"request": {
"imdb_output": "Toda"

},
"response": {

"result": {
"imdb_output": "Today. And falls about some like such the point and␣

→˓still with sci-single. A dark and the dark danger and had ending more cast a"
}

}
},
{

"request": {
"imdb_output": ""

},
"response": {

"result": {
"imdb_output": "nch the genre, it should like watch a brain for each␣

→˓other plays to mean so what it destroyed he has off. You spent failing to t"
}

}

(continues on next page)

2.2. Sequence Generation 111

EIR

(continued from previous page)

}
]

If you made it this far, I want to thank you for reading!

2.2.2 02 - Sequence to Sequence: Spanish to English Translation

In this tutorial, we will use EIR for sequence-to-sequence tasks. Sequence to Sequence (seq-to-seq) models are a type
of models that transform an input sequence into an output sequence, a task relevant for numerous applications like
machine translation, summarization, and more.

For this tutorial, our task will be translating Spanish sentences into English, using a dataset from Tatoeba.

A - Data

You can download the data for this tutorial here.

After downloading the data, the folder structure should look like this (we will look at the configs in a bit):

eir_tutorials/c_sequence_output/02_sequence_to_sequence
conf

fusion.yaml
globals.yaml
input_spanish.yaml
output.yaml

data
eng-spanish

english.csv
spanish.csv

B - Training

Training follows a similar approach as we saw in the previous tutorial, 01 – Sequence Generation: Generating Movie
Reviews.

First, we will train on only the English data, without any Spanish data to establish a baseline.

For reference, here are the configurations:

Listing 79: globals.yaml

output_folder: eir_tutorials/tutorial_runs/c_sequence_output/02_seq_to_seq
valid_size: 500
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
memory_dataset: true
n_epochs: 10
batch_size: 256
lr: 0.0005
optimizer: "adabelief"
device: "mps"

112 Chapter 2. Documentation

https://tatoeba.org/en
https://drive.google.com/file/d/1MIARnMmzYNPEDU_f7cuPwaHp8BsXNy59"

EIR

Listing 80: fusion.yaml

model_type: "pass-through"

Listing 81: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/02_sequence_to_sequence/data/eng-

→˓spanish/english.csv
output_name: english
output_type: sequence

output_type_info:
max_length: 32
split_on: " "
sampling_strategy_if_longer: "uniform"
min_freq: 10

model_config:
embedding_dim: 128
model_init_config:
num_layers: 6

sampling_config:
generated_sequence_length: 64
n_eval_inputs: 10

With these configurations, we can train with the following command:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/globals.
→˓yaml \
--fusion_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/fusion.
→˓yaml \
--output_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/output.
→˓yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/c_sequence_output/02_seq_to_seq_eng_
→˓only

When running the command above, I got the following training curve:

2.2. Sequence Generation 113

EIR

Here are a couple of example of the generated sentences using only English data:

Listing 82: Generated English caption using only English data 1

Tom

Listing 83: Generated English caption using only English data 2

I don't have time to do this.

While the captions above are make some sense, a more interesting task is actually using the Spanish data as input, and
generate the respective English translation. For this, we will include an input configuration for the Spanish data:

Listing 84: input_spanish.yaml

input_info:
input_source: eir_tutorials/c_sequence_output/02_sequence_to_sequence/data/eng-spanish/

→˓spanish.csv
input_name: spanish
input_type: sequence

input_type_info:
max_length: 32
split_on: " "

(continues on next page)

114 Chapter 2. Documentation

EIR

(continued from previous page)

sampling_strategy_if_longer: "uniform"
min_freq: 10

model_config:
embedding_dim: 128
model_init_config:
num_layers: 6

To train, we will use the following command:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/globals.
→˓yaml \
--input_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/input_
→˓spanish.yaml \
--fusion_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/fusion.
→˓yaml \
--output_configs eir_tutorials/c_sequence_output/02_sequence_to_sequence/conf/output.yaml

When running the command above, I got the following training curve:

We can see that the training curve is better than when we only used English data, indicating that the model can utilize
the Spanish data to generate the English sentences.

2.2. Sequence Generation 115

EIR

Now, we can look at some of the generated sentences:

While these are not perfect translations, they are maybe not too bad considering a simple model trained for around an
hour on a laptop.

C - Serving

In this final section, we demonstrate serving our trained model for sequence-to-sequence translation as a web service
and interacting with it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/c_sequence_output/02_seq_to_seq/saved_models/02_
→˓seq_to_seq_model_5000_perf-average=-0.2346.pt

Sending Requests

With the server running, we can now send requests for translating text from Spanish to English.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

example_requests = [
{"english": "", "spanish": "Tengo mucho hambre"},
{"english": "", "spanish": "¿Por qué Tomás sigue en Boston?"},

]

for payload in example_requests:
response = send_request('http://localhost:8000/predict', payload)
print(f"Spanish: {payload['spanish']}")
print(f"Translated to English: {response['english']}\n")

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\

(continues on next page)

116 Chapter 2. Documentation

EIR

(continued from previous page)

-H 'Content-Type: application/json' \\
-d '{

"english": "", "spanish": "Tengo mucho hambre"
}'

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s ability to translate from Spanish to English.

Listing 85: predictions.json

[
{

"request": {
"english": "",
"spanish": "Tengo mucho hambre"

},
"response": {

"result": {
"english": "I'm very hungry and"

}
}

},
{

"request": {
"english": "",
"spanish": "¿Por qué Tomás sigue en Boston?"

},
"response": {

"result": {
"english": "Why is Tom still in Boston?"

}
}

},
{

"request": {
"english": "Why",
"spanish": "¿Por qué Tomás sigue en Boston?"

},
"response": {

"result": {
"english": "Why is Tom still Boston?"

}
}

},
{

"request": {
"english": "",
"spanish": "Un gato muy alto"

},
(continues on next page)

2.2. Sequence Generation 117

EIR

(continued from previous page)

"response": {
"result": {

"english": "A cat was very high."
}

}
}

]

Thanks for reading!

2.2.3 03 - Image to Sequence: Image Captioning

In this tutorial, we will utilize EIR for image-to-sequence tasks. Image to Sequence (img-to-seq) models are a type
of models that convert an input image into a sequence of words. This could be useful for tasks like image captioning,
where the model generates a description of the contents of an image.

In this tutorial, we will be generating captions for images using the COCO 2017 dataset.

A - Data

You can download the data for this tutorial here.

After downloading the data, the folder structure should look like this (we will look at the configs in a bit):

eir_tutorials/c_sequence_output/03_image_captioning
conf

fusion.yaml
globals.yaml
inputs_resnet18.yaml
output.yaml

data
image_captioning

captions.csv
images

B - Training

Training follows a similar approach as we saw in the previous tutorial, 01 – Sequence Generation: Generating Movie
Reviews.

For reference, here are the configurations:

Listing 86: globals.yaml

output_folder: eir_tutorials/tutorial_runs/c_sequence_output/03_image_captioning
valid_size: 500
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
memory_dataset: false
n_epochs: 3

(continues on next page)

118 Chapter 2. Documentation

https://cocodataset.org/#home
https://drive.google.com/file/d/10zanaprFyX4RE0Mib1h5gYi7yO9DNTyy/view?usp=share_link

EIR

(continued from previous page)

batch_size: 64
lr: 0.0005
optimizer: "adabelief"
device: "mps"

Listing 87: fusion.yaml

model_type: "pass-through"

Listing 88: inputs_resnet18.yaml

input_info:
input_source: eir_tutorials/c_sequence_output/03_image_captioning/data/image_

→˓captioning/images
input_name: image_captioning
input_type: image

input_type_info:
size:
- 64

auto_augment: true

model_config:
model_type: "resnet18"
pretrained_model: True

Listing 89: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/03_image_captioning/data/image_

→˓captioning/captions.csv
output_name: captions
output_type: sequence

output_type_info:
max_length: 32
split_on: " "
sampling_strategy_if_longer: "uniform"
min_freq: 20

model_config:
embedding_dim: 128
model_init_config:
num_layers: 6

sampling_config:
generated_sequence_length: 64
n_eval_inputs: 10

Like previously, we will start by training a model only on the text to establish as baseline:

2.2. Sequence Generation 119

EIR

eirtrain \
--global_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/globals.yaml \
--fusion_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/fusion.yaml \
--output_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/output.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/c_sequence_output/03_image_
→˓captioning_text_only

When running the command above, I got the following training curve:

Now, we will train a model that uses both the image and the text:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/globals.yaml \
--input_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/inputs_resnet18.
→˓yaml \
--fusion_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/fusion.yaml \
--output_configs eir_tutorials/c_sequence_output/03_image_captioning/conf/output.yaml

When running the command above, I got the following training curve:

120 Chapter 2. Documentation

EIR

The fact that the validation loss is lower indicates that the model is likely able to use the image to improve the quality
of the captions.

After training, we can look at some of the generated captions:

2.2. Sequence Generation 121

EIR

122 Chapter 2. Documentation

EIR

While the captions seem to be somewhat related to the images, they are far from perfect. As the validation loss is still
decreasing, we could train the model for longer, try a larger model, use larger images, or use a larger dataset.

D - Serving

In this final section, we demonstrate serving our trained image captioning model as a web service and interacting with
it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/c_sequence_output/03_image_captioning/saved_
→˓models/03_image_captioning_model_11000_perf-average=-1.5346.pt

Sending Requests

With the server running, we can now send image-based requests for caption generation. For this model, we send images
and receive their captions.

Here’s an example Python function demonstrating this process:

import requests
import base64
from PIL import Image
from io import BytesIO

def encode_image_to_base64(file_path: str) -> str:
with Image.open(file_path) as image:

buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"image_captioning": encode_image_to_base64("path/to/image.jpg"),
"captions": ""

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

2.2. Sequence Generation 123

EIR

Additionally, you can send requests using bash. Note that this requires preparing the base64-encoded image content in
advance:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{

"image_captioning": "[BASE64_ENCODED_IMAGE]",
"captions": ""

}'

Analyzing Responses

Before analyzing the responses, let’s view the images that were used for generating captions:

000000000009.jpg

000000000034.jpg

000000581929.jpg

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s capability to generate captions for the input images.

Listing 90: predictions.json

[
{

"request": {
"image_captioning": "eir_tutorials/c_sequence_output/03_image_captioning/

→˓data/image_captioning/images/000000000009.jpg",
"captions": ""

},
"response": {

"result": {
"captions": "A bowl of broccoli and a is on a plate."

}
(continues on next page)

124 Chapter 2. Documentation

EIR

(continued from previous page)

}
},
{

"request": {
"image_captioning": "eir_tutorials/c_sequence_output/03_image_captioning/

→˓data/image_captioning/images/000000000034.jpg",
"captions": ""

},
"response": {

"result": {
"captions": "Two zebras standing side by side in a grassy field."

}
}

},
{

"request": {
"image_captioning": "eir_tutorials/c_sequence_output/03_image_captioning/

→˓data/image_captioning/images/000000581929.jpg",
"captions": "A horse"

},
"response": {

"result": {
"captions": "A horse and a goat grazing in the grass"

}
}

}
]

Thank you for reading!

2.2.4 04 - Tabular to Sequence: Protein Sequence Generation

In this tutorial, we’ll employ EIR for sequence generation conditioned on tabular data. Specifically, we will be gener-
ating protein sequences conditioned on their classification.

A - Data

The dataset for this tutorial can be downloaded from here.

This dataset is processed from a Kaggle dataset available here. The original data, in turn, originates from the RCSB
Protein Data Bank.

After downloading the data, your folder structure should look something like this (we will add the configuration files
as we progress):

eir_tutorials/c_sequence_output/04_protein_sequence_generation
conf

fusion.yaml
globals.yaml
inputs_tabular.yaml
inputs_tabular_test.yaml
output.yaml

(continues on next page)

2.2. Sequence Generation 125

https://drive.google.com/file/d/16FMSCOdPxGcCx8oJD5GU1AYIjacbJ2yZ
https://www.kaggle.com/datasets/shahir/protein-data-set/
https://www.rcsb.org
https://www.rcsb.org

EIR

(continued from previous page)

output_conditioned.yaml
output_conditioned_test.yaml

data
test_protein_sequences.csv
test_tabular_info.csv
train_protein_sequences.csv
train_tabular_info.csv

B - Unconditional Protein Sequence Generation

Training will be similar to what we did in a previous tutorial, 01 – Sequence Generation: Generating Movie Reviews.
First, we will start by establishing a baseline by training a model on the protein sequences only:

Below are the relevant configurations:

Listing 91: globals.yaml

output_folder: eir_tutorials/tutorial_runs/c_sequence_output/04_protein_sequences
valid_size: 512
n_saved_models: 1
checkpoint_interval: 500
sample_interval: 500
memory_dataset: false
n_epochs: 20
batch_size: 256
lr: 0.0005
optimizer: "adabelief"
device: "mps"
latent_sampling:
layers_to_sample:
- "output_modules.protein_sequence.output_transformer.layers.1"

Listing 92: fusion.yaml

model_type: "pass-through"

Listing 93: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/04_protein_sequence_generation/data/

→˓train_protein_sequences.csv
output_name: protein_sequence
output_type: sequence

output_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
min_freq: 1

model_config:
(continues on next page)

126 Chapter 2. Documentation

EIR

(continued from previous page)

embedding_dim: 64

sampling_config:
generated_sequence_length: 128
n_eval_inputs: 10

Training the model:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓globals.yaml \
--fusion_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓fusion.yaml \
--output_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓output.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/c_sequence_output/04_protein_
→˓sequence_generation_sequence_only

Executing the command above resulted in the following training curve:

You might have noticed the latent_sampling parameter in the global configuration, which allows us to extract a
representation from a specified the model. In a addition to saving the validation set representations, we also get a
couple of visualizations. For example, here is a t-SNE plot of the validation set representations at iteration 5000:

2.2. Sequence Generation 127

EIR

C - Conditional Protein Sequence Generation

Next, we’ll train a model incorporating both tabular data, which contains the protein type classification and the protein
sequences.

For this, we add the input configuration containing the tabular data:

Listing 94: input.yaml

input_info:
input_source: eir_tutorials/c_sequence_output/04_protein_sequence_generation/data/

→˓train_tabular_info.csv
input_name: proteins_tabular
input_type: tabular

input_type_info:
input_cat_columns:

- classification

Additionally, we can update our output configuration to generate sequences based on manually specified tabular input
values:

128 Chapter 2. Documentation

EIR

Listing 95: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/04_protein_sequence_generation/data/

→˓train_protein_sequences.csv
output_name: protein_sequence
output_type: sequence

output_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
min_freq: 1

model_config:
embedding_dim: 64

sampling_config:
generated_sequence_length: 128
n_eval_inputs: 0

manual_inputs:
- proteins_tabular:

classification: "HYDROLASE"
protein_sequence: ""

- proteins_tabular:
classification: "TRANSFERASE"

protein_sequence: ""

- proteins_tabular:
classification: "OXIDOREDUCTASE"

protein_sequence: ""

Note: While not shown here, you can view the generated sequences in the samples/<iteration>/manual folder
during/after training.

Training the conditional model:

eirtrain \
--global_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓globals.yaml \
--input_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓inputs_tabular.yaml \
--fusion_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓fusion.yaml \
--output_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓output_conditioned.yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/c_sequence_output/04_protein_
→˓sequence_generation_tabular

When executing the above command, the following training curve was obtained:

2.2. Sequence Generation 129

EIR

The (albeit slightly) lowered validation loss suggests the model effectively uses tabular data to improve sequence quality.

Similarly to before, we can visualize the validation set representations at iteration 5000, now for the conditional model:

130 Chapter 2. Documentation

EIR

The separation does seem to be slightly better than before, which could be due to the model given the additional
information from the tabular data.

D - Generating New Sequences of a Specific Protein Type

Finally, we will take a quick look at how we can use a trained model to generate new sequences of a specific protein
type. For this, we will use configuration files similar to the ones used for training, but now pointing to the test set data:

Listing 96: input.yaml

input_info:
input_source: eir_tutorials/c_sequence_output/04_protein_sequence_generation/data/test_

→˓tabular_info.csv
input_name: proteins_tabular
input_type: tabular

input_type_info:
input_cat_columns:

- classification

2.2. Sequence Generation 131

EIR

Listing 97: output.yaml

output_info:
output_source: eir_tutorials/c_sequence_output/04_protein_sequence_generation/data/

→˓test_protein_sequences.csv
output_name: protein_sequence
output_type: sequence

output_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
min_freq: 1

model_config:
embedding_dim: 64

sampling_config:
generated_sequence_length: 512
n_eval_inputs: 0

manual_inputs:
- proteins_tabular:

classification: "HYDROLASE"
protein_sequence: ""

- proteins_tabular:
classification: "TRANSFERASE"

protein_sequence: ""

- proteins_tabular:
classification: "OXIDOREDUCTASE"

protein_sequence: ""

Now, we can use the eirpredict command as follows:

eirpredict \
--global_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓globals.yaml \
--input_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓inputs_tabular_test.yaml \
--fusion_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓fusion.yaml \
--output_configs eir_tutorials/c_sequence_output/04_protein_sequence_generation/conf/
→˓output_conditioned_test.yaml \
--model_path eir_tutorials/tutorial_runs/c_sequence_output/04_protein_sequence_
→˓generation_tabular/saved_models/04_protein_sequence_generation_tabular_model_5500_perf-
→˓average=-1.7293.pt \
--output_folder eir_tutorials/tutorial_runs/c_sequence_output/04_protein_sequence_
→˓generation_tabular/test_results \
--evaluate

This will save the results in the specified --output_folder. While we do evaluate the loss, it’s perhaps more inter-

132 Chapter 2. Documentation

EIR

esting to look at the generated sequences as well as the latent sampling, available in the results and latents folders,
respectively.

F - Serving

In this final section, we demonstrate serving our trained model for protein sequence generation with tabular inputs as a
web service and interacting with it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/c_sequence_output/04_protein_sequence_
→˓generation_tabular/saved_models/04_protein_sequence_generation_tabular_model_5500_perf-
→˓average=-1.7293.pt

Sending Requests

With the server running, we can now send requests that include tabular data to generate protein sequences.

Here’s an example Python function demonstrating this process:

import requests

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

example_requests = [
{"proteins_tabular": {"classification": "HYDROLASE"}, "protein_sequence": ""},
{"proteins_tabular": {"classification": "TRANSFERASE"}, "protein_sequence": ""},

]

for payload in example_requests:
response = send_request('http://localhost:8000/predict', payload)
print(f"Classification: {payload['proteins_tabular']['classification']}")
print(f"Generated protein sequence: {response['protein_sequence']}\n")

Additionally, you can send requests using bash:

curl -X 'POST' \\
'http://localhost:8000/predict' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\

(continues on next page)

2.2. Sequence Generation 133

EIR

(continued from previous page)

-d '{
"proteins_tabular": {"classification": "HYDROLASE"},
"protein_sequence": ""

}'

Analyzing Responses

After sending requests to the served model, the responses can be analyzed. These responses provide insights into the
model’s ability to generate protein sequences based on the tabular input.

Listing 98: predictions.json

[
{

"request": {
"proteins_tabular": {

"classification": "HYDROLASE"
},
"protein_sequence": ""

},
"response": {

"result": {
"protein_sequence":

→˓"EILYEGKLLSGGVDAVFLPVRRDIKSVSALGYQSVDEDRILQSGDTIIVRDGPKIIGGLRAHAVHESIGLTLEGPAEFGVGSPEARFDETVRRTGVLVDHLDVAPVTARRRGVLVKGRLEFAIGLVIA
→˓"

}
}

},
{

"request": {
"proteins_tabular": {

"classification": "TRANSFERASE"
},
"protein_sequence": ""

},
"response": {

"result": {
"protein_sequence":

→˓"KEIYLNGAVNKYIYNVTNLSSGKEATKDIKKASKVTGQAAIREVKGDKIIKAYARKEDKLSKDPIIKDNLIVGIKELISFEYVTGNPDFVSLRLKGVLGGYTFEFVKPNKDEFFVAIPYFKTVEEKID
→˓"

}
}

},
{

"request": {
"proteins_tabular": {

"classification": "OXIDOREDUCTASE"
},
"protein_sequence": "AAA"

},
"response": {

(continues on next page)

134 Chapter 2. Documentation

EIR

(continued from previous page)

"result": {
"protein_sequence":

→˓"AAALLKLKKAVVLTGSQAILALGAVGAGASLRGGSADFQPVVAPGTASGIPTASVTFVKEAAQVLAENAATAVFGRDGDALRLTVTDAELDRTVETRVSPPLEKAVILALASAEDEEATRGVIVATGA
→˓"

}
}

}
]

If you made it this far, I want to thank you for reading!

Thank you for reading!

2.3 Array Generation

2.3.1 01 – Array Output: Building a Simple Autoencoder for MNIST Digit Generation

In this tutorial, we will explore the capabilities of EIR for array output tasks, specifically focusing on MNIST digit
generation using a simple autoencoder. Arrays can represent various types of data, including images, time series, and
more. This technique allows us to generate new, meaningful arrays based on patterns learned from the training data.

Note: This tutorial assumes you are familiar with the basics of EIR, and have gone through previous tutorials. Not
required, but recommended.

A - Data

Here, we will be using the well known MNIST dataset. The dataset here consists of preprocessed NumPy arrays
containing the MNIST handwritten digit images. To download the data, use this link.

After downloading the data, the folder structure should look like this:

eir_tutorials/d_array_output/01_array_mnist_generation
conf

globals.yaml
input_mnist_array.yaml
input_mnist_array_with_label.yaml
input_mnist_label.yaml
output.yaml
output_with_label.yaml

data
__MACOSX
mnist_labels.csv
mnist_npy

2.3. Array Generation 135

https://drive.google.com/file/d/1q-ZBJJvLLW61AGBfYfLtKADvY4j4_OGb

EIR

B - Training A Simple Autoencoder

Training an autoencoder for MNIST digit generation with EIR involves the familiar configuration files and follows a
process similar to supervised learning. We’ll discuss the key configurations and visualize the training process, including
the training curve and generated images at different iterations.

The global config provides standard parameters for training:

Listing 99: globals.yaml

output_folder: eir_tutorials/tutorial_runs/d_array_output/01_array_mnist_generation
checkpoint_interval: 1000
sample_interval: 1000
valid_size: 1000
batch_size: 64
n_epochs: 10
device: "cpu"
optimizer: adabelief
lr: 0.001
memory_dataset: true
latent_sampling:
layers_to_sample:
- "fusion_modules.computed.fusion_modules.fusion.1.0"

Note: One new thing you might notice here is the latent_sampling configuration in the global configuration, which
let’s you extract and visualize the latent space of chosen layers during training (computed on the validation set).

The input configuration specifies the structure of the MNIST array input:

Listing 100: input_mnist_array.yaml

input_info:
input_source: "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_npy"
input_name: mnist
input_type: array

input_type_info:
normalization: channel
adaptive_normalization_max_samples: 10000

model_config:
model_type: lcl
model_init_config:
kernel_width: 8
attention_inclusion_cutoff: 128

The output configuration defines the structure and settings for the generated images:

Listing 101: output.yaml

output_info:
output_source: "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_npy"

(continues on next page)

136 Chapter 2. Documentation

EIR

(continued from previous page)

output_name: mnist_output
output_type: array

output_type_info:
normalization: channel
adaptive_normalization_max_samples: 10000

model_config:
model_type: lcl
model_init_config:
channel_exp_base: 4

With the configurations in place, we can run the following command to start the training process:

eirtrain \
--global_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/globals.
→˓yaml \
--input_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/input_mnist_
→˓array.yaml \
--output_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/output.yaml

I got the following results:

2.3. Array Generation 137

EIR

Since we had that latent space sampling configuration in the global config, the latents are saved and a couple of visu-
alizations are generated, here is one with the t-SNE visualization of the latents at iteration 9000:

Here we have colored the latent space by the digit label, and we can see which labels are close to each other in the latent
space. For example, it seems that 4, 7 and 9 are close to each other.

Now, when we are generating arrays, EIR will save some of the generated arrays (as well as the corresponding inputs)
during training under the results/samples/<iteration> folders (the sampling is configurable by the sampling
configuration in the output config). We can load these numpy arrays and visualize them.

Here is a comparison of generated images at iteration 500:

138 Chapter 2. Documentation

EIR

And at iteration 9000, we can observe the improvements in generation:

2.3. Array Generation 139

EIR

140 Chapter 2. Documentation

EIR

C - Augmenting Our Autoencoder With More Data

In this section, we will explore how to augment our MNIST digit-generating autoencoder with additional data. Specifi-
cally, we will add the MNIST labels to the autoencoder, which will allow us to conditionally generate images of specific
digits.

The global config remains the same as in the previous section:

Listing 102: globals.yaml

output_folder: eir_tutorials/tutorial_runs/d_array_output/01_array_mnist_generation
checkpoint_interval: 1000
sample_interval: 1000
valid_size: 1000
batch_size: 64
n_epochs: 10
device: "cpu"
optimizer: adabelief
lr: 0.001
memory_dataset: true
latent_sampling:
layers_to_sample:
- "fusion_modules.computed.fusion_modules.fusion.1.0"

The input configuration now includes additional files to represent the augmented data:

Listing 103: input_mnist_array_with_label.yaml

input_info:
input_source: "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_npy"
input_name: mnist
input_type: array

input_type_info:
normalization: channel
adaptive_normalization_max_samples: 10000
modality_dropout_rate: 0.2

model_config:
model_type: lcl
model_init_config:
kernel_width: 8
attention_inclusion_cutoff: 128

Note: Here we see another new option, modality_dropout_rate, this will randomly drop out modalities during
training, which can be useful for training models that can handle missing modalities.

Listing 104: input_mnist_label.yaml

input_info:
input_source: "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_

→˓labels.csv"
input_name: mnist_label

(continues on next page)

2.3. Array Generation 141

EIR

(continued from previous page)

input_type: tabular

input_type_info:
input_cat_columns:
- "CLASS"

The output configuration has also been modified to accommodate the augmented data:

Listing 105: output_with_label.yaml

output_info:
output_source: "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_npy"
output_name: mnist_output
output_type: array

output_type_info:
normalization: channel
adaptive_normalization_max_samples: 10000

model_config:
model_type: lcl
model_init_config:
channel_exp_base: 4

sampling_config:
manual_inputs:

- "mnist_label":
"CLASS": "0"

- "mnist_label":
"CLASS": "0"

- "mnist_label":
"CLASS": "5"

- "mnist_label":
"CLASS": "5"

Note: Notice here we are using some manual inputs in the sampling configuration, which will allow us to generate
images of specific digits.

We can run the following command to start training the augmented autoencoder:

eirtrain \
--global_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/globals.
→˓yaml \
--input_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/input_mnist_
→˓array_with_label.yaml eir_tutorials/d_array_output/01_array_mnist_generation/conf/
→˓input_mnist_label.yaml \
--output_configs eir_tutorials/d_array_output/01_array_mnist_generation/conf/output_with_
→˓label.yaml \

(continues on next page)

142 Chapter 2. Documentation

EIR

(continued from previous page)

--globals.output_folder=eir_tutorials/tutorial_runs/d_array_output/02_array_mnist_
→˓generation_with_labels

I got the following results:

Here is a visualization of the latent space:

2.3. Array Generation 143

EIR

Here is a comparison of generated images at iteration 500 and 9000:

144 Chapter 2. Documentation

EIR

2.3. Array Generation 145

EIR

Now, since we added those manual inputs earlier, they are also saved in the sample folders (under manual), and we
can visualize them:

146 Chapter 2. Documentation

EIR

2.3. Array Generation 147

EIR

So indeed we can see, in the absence of the actual image to encode, the model uses the class label to generate the
respective digit. While not immediately obvious, the generated images of the same class are not completely identical
(although they are extremely similar), due to some stochasticity injected into the model.

D - Serving

In this final section, we demonstrate serving our trained model for MNIST array generation as a web service and
interacting with it using HTTP requests.

Starting the Web Service

To serve the model, use the following command:

eirserve --model-path [MODEL_PATH]

Replace [MODEL_PATH] with the actual path to your trained model. This command initiates a web service that listens
for incoming requests.

Here is an example of the command:

eirserve \
--model-path eir_tutorials/tutorial_runs/d_array_output/01_array_mnist_generation/saved_
→˓models/01_array_mnist_generation_model_9000_perf-average=0.9688.pt

Sending Requests

With the server running, we can now send requests with MNIST data arrays. The data arrays are encoded in base64
before sending.

Here’s an example Python function demonstrating this process:

import requests
import numpy as np
import base64

def encode_array_to_base64(file_path: str) -> str:
array_np = np.load(file_path)
array_bytes = array_np.tobytes()
return base64.b64encode(array_bytes).decode('utf-8')

def send_request(url: str, payload: dict):
response = requests.post(url, json=payload)
return response.json()

payload = {
"mnist": encode_array_to_base64("path/to/mnist_array.npy")

}

response = send_request('http://localhost:8000/predict', payload)
print(response)

148 Chapter 2. Documentation

EIR

Retrieving Array Information

You can get information about the array type and shape by sending a GET request to the /info endpoint:

curl -X 'GET' \\
'http://localhost:8000/info' \\
-H 'accept: application/json'

This request will return details about the expected array input and output formats, such as type, shape, and data type.

Decoding and Processing the Response

After receiving a response, you can decode the base64 encoded array, reshape it, and cast it to the appropriate dtype
using the information obtained from the /info endpoint:

def decode_array_from_base64(encoded_array: str, shape: tuple):
array_bytes = base64.b64decode(encoded_array)
return np.frombuffer(array_bytes, dtype=np.float32).reshape(shape)

array_np = decode_array_from_base64(
response['mnist_output'], shape=(28, 28)

)

Important: While the original output arrays can be of any dtype, and that information is provided in the /info
endpoint, the response output arrays are always of dtype float32, which is the output dtype of the model itself. The
model output is then un-normalized using the training set statistics (assuming normalization was used during training).

For example, since these are images originally in uint8 format, we can process the response arrays as follows:

from PIL import Image

array_np = (array_np - array_np.min()) / (array_np.max() - array_np.min())
array_np = (array_np * 255).astype(np.uint8)

image = Image.fromarray(array_np)
image.show()

Analyzing Responses

After sending requests to the served model, the responses can be analyzed.

Listing 106: predictions.json

[
{

"request": {
"mnist": "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_

→˓npy/10001.npy"
},
"response": {

(continues on next page)

2.3. Array Generation 149

EIR

(continued from previous page)

"result": {
"mnist_output":

→˓"AJATvgCEPj0A8EO8AADVugAYmjwAADS5AGDWuwAAcDsAqJK8AHCQPQBUIr0AkGy8AEBCvACA9roAgFM7AIDaOgBATLsAsMU8AGCMOwAAIDoAgGO7gMDivgBg5zsASJc8AADSuQCwoTwAjqs9AOjuPADg8L0ALAk9AHQjvQAANDkAmKs8AGCsPQCwLTwAHE29gGNzv0D4Fb9Anh8/
→˓ADPyvmAJAcCAqyI/AB44PiDpzz8AfVc/QNyeP0DXhj+Ahyg/
→˓gCrbPgDMgr0AQKk7AFB1vADAczsAwCk8AChnPQAgOz0AvBK+AMxYPQCcmT0AAIG6wKs/
→˓PwCygb0AkUk+QENjvwB5G7+Aoqu+8L7eP6DY6r9A/lbAoPOXP8Bo27/g3WvASOG1wBi2IsFAn/
→˓nAUA7VwHAlv8Cwok3AAFBNvQAoyD4AgFQ9AFTivQAcxD0AKAQ9AHcTvgCERz0AcO28AIiovABzYj6AMCa/
→˓wDUFP4DGhz6Qn27AAICNvzQw80CA05G/RM4xwSCBacBgUrm/
→˓EuQBQQCe5r34XJDAgFIZwABOgT2A9LzAwISVwIAjDT+Adre+AGjSPcAFXz8AvuI9AChnPQAuFL4ACP88AMjVPQCMqb0A9ZC+QHWdvwD/
→˓Er+ozk5AAJ11QKCrKkHMYiZBAMVgwAB8db+A5wbAQCRzQAD+370crrLBS2OUQtJBLkNOQDtD+mvHQYBzxj4A/
→˓Go+oHhEwACizb+4ugFAAAk+PgAqsD0Apxi+APAPPADTcj4ABe8+ANfgPxClB8BA8BrAsFIvQOAlnEAQ2BVAuHjNQCBynb+AOxo/
→˓cPwGwTxQPcFA92vA1j9fQl1cKkMlxJFD9vhoQ3pUZUJwR33AkK6sP2DhW8CAhcq/
→˓sAauPwCA4rsATCs9ACgbvgAMPD0AIsw9wOtnP8B/oj/gboi/UHVMwPCePcA4kjpAgjwCQUCmDMHg8nnAiNE/
→˓QIiRW8EMZdpAnEqmQglYPUMmbIFDPz9zQyeiFEP3nDBCRAm2QXCfcUBAVN0/
→˓AFDFvABtAL6AkaC+AIAQPQDFNr4AIpU9gKKnvvA9A0CAZoo/
→˓QLg3vwAa9T0AiCg9QNYBP4xOBUG0DxPB+EPtQHQcpkCqvNTBLEp7QjGlM0Ocbn9D/
→˓dWBQ3EII0MiNVpCUHidQmcICUPtM4RCACTKPWCB3T8gjui/
→˓gFWbvgD0ST0ANya+QDM5vwDs1L1oemlAEMTlP4AWNcDAWBs/gCc0v6QTAEH45QtAMAPhwIAzTj8ArpDBk63CQU/
→˓EOEPgoIVDDpBzQ4qaC0N4J9ZAcPJgQr5dU0MYFIRDRtUZQ9BOKsAArWU/
→˓ADtLPgBalr4AiNY9AEUOvoDjFL8AkA0/qH5CQABazT5A/
→˓FXAYGm6P4BdLMCwdgVA4IK7v3DsmcD0GgbB2EWtwF4Hu0LGJWpD/xB9QyZL2UJAhFG/
→˓ij34QSe5IENSmoFDz2qJQ4VGEEO8IpxAANBSPADLgT7Alg8/
→˓AF6cvgAHDr4AILU7AI0PPoAlsT7g+zTAIKjRvwCERj2QTwRB4McywKBd0MDQgUPAWrmBwcpamkLZwk1D676DQ+PcOUOotYVBs0QgQoFcJkNh14lDtMx6Q2TvL0MouWFCSIFlQAAsbb7giR3A4JObP4AUxT4AWSK+AFQSvQBmAr+AnTi/
→˓wDf0vwAA6j1Q0WfAiGP4QIAKZb9AEkG/
→˓5KoWwYwBFUEA5gNDtV96Q9oubUOTtgtDU1+dQipuMEMjWoZDd8uOQ2wEJ0NeJotC+Lq9wCD5rr8ATqq/
→˓4PKjv+CIgz+A0O8+AKUYvgCgaDwA+6K+AC7vvQC7ZD5gjqu/
→˓4KzOv9AzBUAszNdAUPMRwLwJWcHAQnlBMxERQ5NabENe7TFDYIIXQyWNakPINYtD2BVvQ9J0NkNUpA5CfjhTQThv3sCAEs2+4APMvwDeLj6Aig0/
→˓AI64PQAvE74AoPM8AJYwvoCuuT6AEAxAoDzrvwBdGj/goPy/
→˓PHu+QNCOnUByQ4XBIIX8QcyZQkM4zYVDDEloQyPCXkN8kYdD1VmBQ6JhJENxDWFCiKStwCByob9wwEBAwJ8IvwD82L0A3ZY/
→˓APCxPQCisD0AIyC+APRMPQA3Fr4A5EQ9WNYsQIAOdL8A5JW9+PNXQIAAzUC+mNJBxlS4wTC840EAxT9D6zqBQxeHgUNAqoVD5hJnQ3tgDUP8xj5CTCtNwVBaeEBA0z2/
→˓AIxXQAAihr6Au/U+OOUFQACTqz4AzEE9AMQUvgBUiz0A4HW+AMwvv4CIkD4wgcg/IM2cvwD6Jz9o25fA/
→˓FDFQOAMRcE/
→˓mINCsbpaQ9WXiEMSkYRDnUxrQzVSAkM6JeRBLFFswSr1tMHAUhXAAAqMP2D2AsCAVY4+4LKdPwgDFEAAaLI+AP68PQDtFL4AkA49gFMDv+Dczr8QGhXA4DE9QCCQWsBQopvApPc1wVaOQ0ECnrVCX9BOQ6HZhkOkjINDixFtQ/
→˓hQCEOAwmNATP4GwfKigkHAGJjAmKzUwNqpKEHQUak/
→˓AOwxP4hkBkBgmypAQEJVPwBEgD0ACya+AED2PIAFQr9AiDfA8FGWwHCPsD8AKMy+cMrpP5RANEIA8P5C3yxcQ+TtjkOwRm1DmhdqQ4wfhUOsuC9DUIQYwcRdy8F6pkJBkGxqQSBiz7/
→˓g+nVBGCYhQADHnr7wqrE/8N/PP4CavT4A+Go9ACYavgD48jyA5ce/ILTbv7iLjcAAmM4/AN/
→˓WvrRwQEEHRQhDYu9gQ+2xhkMGt2ND9L76QsgA3ULJHTdD8FhlQySNu0Jcr1PBnNcCwYjgz0CwG9rAQPCWPwAKST+AWIM+wJ6FP8D1rz8AANq5ADaYPQA4D74AITg+sOMSwAAWQr4Auge/
→˓IKTJP5BaZMCkxgdCOHxaQ1dIgkMxg1VDxRKDQgiwzMF0IGjB+qBmQoJvg0ORSzxDdz2MQeCJW8AQWZPAADVjvySZCsFQXQHAAJ6/
→˓PZB24T9ALlM/ABqcPQD+gD0AdRe+ABzFPcBn0L8A0CA/AC4bPgCaiz7AJqK/
→˓UCS6Ql6gg0NtxoFDfAUOQ2AUr78AcmvAZL5EQr3/
→˓GENvH5BDG0tUQ8plAEKAgpC+iMK2QAqCekHAugDAgHCOPoD2KkAoBkFAAAFuvwAJXz4AsNc9AIoivgC3Cz4ASAS9AJ0EvgDjFj+oaypAgF/
→˓APoA6yEIX4oZD1N2BQxQnQkOstjJDvjhXQ/
→˓WHaENyX4VDb2iHQzEvSUPohptBcFpmwMBZrUDo5QpAYB4VwMD7W0CITp5AoHvXP4Bh0r8A1Gs+ABCFPQAwKr4A8B+9YDiLPwBxsL5gaz3A0Pt3QAAFVD/
→˓TCgFCrRVQQ4m0g0NUFntDgqmDQ+5BgUPpyIFD6ex3Q9jsPUOgXtpCQFBuP0BeHz8A830+IMhKwHDGbMCAInA/
→˓HEerQAA6mD/ADVa/AMrRPQBcCT0AJBK+AOwMPYCeyT7ADhU/
→˓cCZZwNj2M0DQ4E1ASDXKwDTW0ELhbktDBIZfQ9ltcEOdj1ZD+Bg7Q4aQxkK+cfVBcJ5HwIC/58BAK46/
→˓AK+uvuioPEDAsxo/gGYqP8iYMEAAB1Y/ADgOvYAz1r4AqDs9AJkQvgAQ/
→˓jwAqyc+QBsGPwCYFL8AlAc+YCcvQAAdoj84BdlAQCc3P0aKEEGgmg7BpIYaQdAOJ0Ak15hAeAzkwCz+g0CUkw9BuF3YwABEuD4Q3UJAsJkyQACgBz+AUGo/
→˓AOJTvgAQWz0AAQA+AGQaPQArFb4A0Ow8AGi4PADoGz0AexQ/wA80v8ANGT8AoLA/
→˓sJ0JQKCuVsCA+gjA4CI6wEAxV78AvQg/QKyePwTigEDYWdTAAIFwQHDPvz9AZRE/YNzHv6Cb9T8AmAI9AC/
→˓OPgC0MD0AsM48AHIGPgBsDD0Auxi+AIgTPQAIn7wAAGQ6AHBfvADvGr+AAoa+IO2NP4DZyz6A9VfAsC/
→˓aP8Bhh0Cg+/G/cP++wEBzWUCAc4NA8BGzwOB+ir+wQAVAADx9vgCXIj8AdfQ/

(continues on next page)

150 Chapter 2. Documentation

EIR

(continued from previous page)

→˓ACCpuwBwljwAAAO6AMABPQCGiD0AEOM8AIgVvgAsHj0AoNu7AICuugBAODsAeIC8ALAovACMEz4ARWo+QJYnwACm7j2o4jVAYPjyvwCxpL7A72o/
→˓4MyqP4BB/D4AOMW+ALSgvQDmOD+A2w5AAOCSuwCYZL0AYJQ7AIA2OwC4xjwAVJY9AAj0PA=="

}
}

},
{

"request": {
"mnist": "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_

→˓npy/50496.npy"
},
"response": {

"result": {
"mnist_output":

→˓"AH6AvQCIt7wANjm+AEAvOwBwyDwAADa6APAuvABAcjsAKI28AHjFPABQWL0AsLW8AAAOOwCAwDoAWK08AACROwCAQ7sACtO9AMDcOwAA4joAIIC7AKTcvgAAQTsAKKk8AGCzuwDNFz4AdrQ9ANYHPgAgkb0AKKS8APzwvQBALzsAQJs8AJSXPQCAQzsAHxm+0FQPQIANyEA0xaVACEiKQGhpiEAAFLE/
→˓IOzjPyA5/z8AanU/AGvKPgC6YL4gk4I/AKSTvQBw/
→˓DwA4Lk7AMBoOwBAYDsAPAc+AM6bPQCQED4A7IS9ADDTvAADFL4AoOA7AE0mPwD6gb2AhaC+IKi3PxAVR0GI+Y9BxtjnQTLrIEJmGTFCpI/
→˓tQcwbEEL75/
→˓pByfiVQYiNk8DIMZPAQBbQvwDwqLwAu52+kCyzP8AQJz8AdP09AIjWvABE1z0ADQc+ABiRvQDwFrwABje+AEgYPYCLqz6AAnS/
→˓wBUTP/zeMEH8xERClt+dQgy0+UK/QB1DXsMZQyjO1EIdAihDNCYOQ9pKiEK8IyxBQGMkv9Q0+0AAMfk/
→˓YH9XwKB53T8AtQo/
→˓AFE+v8BpPj8ALPA9ADwaPgCQW70ASIa8ACMLvgAE+70AVtu9gMonwCB+NcA920hCol0aQ9vqREPpTW5DrZVpQze7SUNENFhDhOleQ0CNf0OpCINDK9YsQ4IJDkIoI+tAeE++QMALTb+YsEdAgA0BP3DwRMBAFx4/
→˓AORzPQBRLT4ASGi9AAhxvQDUHb0AaJG+CIYWQKjqxMCMqd1ApHADQ2AhQENn0SxDZw8DQ/
→˓DUGUJkizlBoLBZwELxhUHO3/lCpVxuQ96VeUPi+/
→˓xCgPFdQDANpkCwahVAIH8XQMBkjr8A1pu9wHtMP4D+yb4AvxA+AJqfvQDAY7wACRO+QH8Xv7CNH0CQ09rAglcKQvz/
→˓JENQAAFDy8kdQs7NrcG8CIHBwGbRwBDDUcBI4MDAzDonQZlXVEKJVERD4qZfQ+jlUkIQmaFAdOqVQCwaikAAMWc+sK1WQADHnT5AJvS/
→˓APR7vQD4Vb0AmIU8QM8UvyD+hr8APdm+0NmswJDYGkLSMMZCA9FsQuosPkEo65DBZujAQSBsyT/
→˓IGM7AVBauQYBkBz+06EBB4ClEQ/79hUNSsulCIGP+P8Bl1L9ANbo/gGC8PoDhbL/AbS+/
→˓gI7ivwC6sz0AjJW9AFD5vYAmg74AhJc/
→˓gKVhv4Drqb625jpBkATOQXBb4EHMU8dAGH1oQADAwrwA138+mHviwAA4qUGYqOLAMGSAwXzwHUPySGZDDIEKQxAgI0FAx1vBAHixvEBwesAgkrw/
→˓QK8HPzAmCsAAKO08AGxkvQCpF75A+R8/
→˓sArcP6Bfnz+wqR9AAFO1vuDWmr8QetnACBL8QAjZJ0FoLpnAcNgLwMS/LMFIxjlB/
→˓ksIQdAy7MDrYyxDrSJ7Q2iQy0JAeWDAgEhXwOA8k0CAngw/kBCgwIBU0L6Ac/W/AM5vvgDcbL1AsAE/
→˓0FHOPwDkST9wvNo/gJtlPwD5cD6AC3a/8CSjwMDq8b+Ig7DAWK3KwHZ/IkHgr9+/
→˓+K4sQHC4XcE+TZ1BB5NQQ1neakOgvYdCLlUhQQDUOb3AAtS/gPG+vgAPPj4AGD4/
→˓AOolvoAMuD4AKpW9AGBovCA9hD8AkrY9AH4SvhAZBsAgnxXAdKEewUrTF0FYNXtAGLr0wOC2nD/A7bq/
→˓UBYPwE4BOUHwiu7AgP3AQkXkckOo77lC8GgAQQC2Cj8MFwzBQCIHP8Cf87/
→˓Qc+VAoIvnP4Du7j4Aybo+AAh5vQCiDL4AoAQ/gH5iPwCwTz2IJNXAgK5dwBz/
→˓CcH42o3AWPWUQBAasMCwnr5AgMOQP0hdEEEy8MLBKVvTQe4iaEMG8WlDyxE6Qtg3+sBIbQRA6HOVwKAOikCYrURA4Nnsv2D4wz8AOT0+AAgQPgDgib0A1LG9ADsVvoDvnb5wW+Y/
→˓YApZwACRYT8IgQZA0DP/P/
→˓DSs8CgixPAmBGswfCQkMC4k1VAGLZDwfK3vEI9WndDyygWQ84DC0GwGXtBBmVjQaykjEDQ2dZAmG0BQFwmUsFgzqg/
→˓ACEUvgAY2T0AYG29AOxZvQCC/b2A56G/QInZP6A3xD/gXoA/
→˓Liw0QXypuUD8wQ3BSE63wFgFwsB8gqhAODPDwHOfFkJ7RjRDBkt4QyuVrUKIEZHALuU+Qegq5cDAwuq/
→˓AJRUP8AZfb98H3XBwIjSPwCzcz4ATOo9AJh1vQCymL2A6Za+QIr0v8CIKL/
→˓oWTVAgKxtv3CYNsBAtSfAKqA4QbYPhkK4aAFDRL0PQwBGCkNCuztD+7doQwzmGEN6TNFB4OCJv1xKdMEepafBIAOIwECTyr8A0EW9UGfDP9CeHUAAxaA+ACoaPgAair0AVJy9ADfKvkBKIcAACFS/
→˓wEh5v4BztL5soLbBCjYAQpAB/
→˓EJPu2pD+M14QyjHg0MvZ2xDPZeKQw6YYUOUjydC8CBJwI04h0H2qgZBiM+bQIMfhEEsAkVBkL7WQHqB00FEPZFAQNVZPwCofj0AQpG9ALaEvUDtAL/
→˓Q/
→˓BPAILTHvyC+v8C4LC7BbC2UQaT4DUPeF1lDC+8KQ0Uiu0LObfdCERglQ9Dhh0OSiXpDepC0QggyVMH0kmLBALwjPfipMME8u0LBIGCjwCiwncC0cEtBkN1tQADEFT4AoA0+AAKNvQDoR70AZxu+4B+Hv8ArA8AAxsa/
→˓4sOhwcw28kKy5FhD8hISQyxxLEGQOF1BuuKSQjGgN0MLz29D4YSEQ3XCKUOHbMZB9No5wUNuRsKG9ajCiJuVwhBPnMJlUADCuR4awoDkzj4ANCi+AO0ePgCodr0AABw+ACCoPgDAfD8AWme/
→˓AFOVPiYHAkKfe05D+cR0Q8z4VEJIkcHB8HFQQh42GUP2pF5Dik79QurRXUOmqU5DlQ42QxiH9EKUaTtBAFBnPxOphEEWh7xBrCgqQsdIKEI0v+tAAKDNuwBAMT4ARHu9AACSPcCZLD8wxFFAgJGlvwC1+b8bJCVC5hd2Q3r8fkP+9/
→˓tCbf0IQ0TyN0PxoGRDT8Q0QwDo2bycVUVCr4Y5Q/
→˓PqikNq6nBD2q44Q8IIWUPjF2ND8HpVQ4SaKUPzlSdDpcSbQQCWrD0AIUM+AOKfvQDnCD6Aupg+OFEkQGDKkD/

(continues on next page)

2.3. Array Generation 151

EIR

(continued from previous page)

→˓YfptAmIT8wPo0K0PBFWRDvktdQ+FkgEM5c2JD+7gVQysry0H6Q97BI7+GQV3EOEJsyepCSVkiQwcBIEM/
→˓IRpDiuoaQ9AQwUIlRxtDRtT0Qr52lUEAcCM+AKUsPgBilr0Aqu29AKoNPgCqRb4A4EW/
→˓hBPyQAjL8cC6FPBBfqTGQjr/xEK//
→˓41C7pAOQpjqzMDAQxrBuOUIQSCIykAyVoTCQGXnwESO60EvwoBBBIcTwXHUsUFiV5jBNNw0QjMoBELkcPBAABjhPAB+Aj4A/
→˓oC9ALjuvIBp575gPOS/wL+IvwBet73wMLY//NxHwfCgJ0Dg1J6/
→˓YMP1P76DhsHA7I3BwMDIP0ZAksEwNmhAAChQP/
→˓wFvkCwDrXAav+7wZnOA8LoNbzASBwcwTD9KsGoKp5AgEhhP0DXBL8Adgg+ALyEvQCA1rwA1OK9QP4+v0C5VD+w5gXAkH6oP6BZjb8geelAMDa2wKhpfEAAKYI+WOKWQCChSMAYMKTASAf+wOBWkEDQs0PA4DGHvwDGkz7oHpJAYPXfQAQ5iEBY3hzBAEduPgB2kj4ASt49ALETPgDwc70AgK68AHjhvQCQtzwAOoc/
→˓gEWtvhh0I0DA68zAWxWEQYDfr79UQgLBXmcKQcA72z/wTd7AgDMTwDitcMFkqD7BGNX9wHDkGMAgjNM/
→˓7NMOQYCrwUCgWZZAsLogwOBqh78ATAA+AFDSPQApHT4A9H29ALi3vAAVHL4AAII7AKAMvIDf5r4gl5U/
→˓YOjavwhgkEDgM1bAiHklQExci8FcvyvBFA/
→˓PQKOihUGcAeNA8JcDwNCsVsCgJpzAAESyvmj7p0Bg80FAgIZdPwBw1T0AQDQ7AG8UPgAAqz0AmxE+AJxovQAcAr0Arg6+AACsOgCAmzoAMAG8AK77PYARvD4A9ZA+4Bf9v4A9pr4A/
→˓Le+MF4JwAC5qT5A2eY/2DdWQBA13D8ACtw9QBl/v4CjkD7gBfg/
→˓AExFPoAauD4AABC4ALBHPQDvDj4AQpM9AGcPPg=="

}
}

},
{

"request": {
"mnist": "eir_tutorials/d_array_output/01_array_mnist_generation/data/mnist_

→˓npy/25640.npy"
},
"response": {

"result": {
"mnist_output":

→˓"ADKzvQBYbT0A+U8+AIDUOgDgjTwAAI+6AAAbOgCARLsA8NW8AKTDPQAQTbwAULu8AIAWuwDAersAKOI8AABXOgCAMbsAvKK9AEBjPABghjsAABY6ADX2vgB0GT0AADQ7AABwuQD8ib0ARhC+AACXugAoqr0AeGM9AHALPgAAI7oAEKG8AC6XPQAkLb0AZpg9AOV4vwBAejsADAi+QJnyv5DJrj/
→˓wANA/AEhSPQBZ+T6AkU4/YMvPP8Aotj9A7Ck/
→˓gO9OPwDQLb4AoHK8ALBgPAAADjoA4HK9ACYAvgBACzwA6Ju9ABCCPQCeHT4AwHq7ANONPgCYmrywLMg/
→˓IO+yQJS8wkCAvGc/QK5eP/BMVMBU74NAWNjoQHCkVMBgFDVBqFXhwGieAkAi/ChBwHaOPyBK1r8gfaS/
→˓AJ1SvjDp6z8Adsi9gKCgvgAoob0AwCW8AACdvQBWhD0A8Fw+AJMuPgCgeT3AaUG/
→˓oOWBP9bbLUGA7htAABILPzD0zT/E9VPBINkuQCA4k78AgUi+aLwGQKCUgz+g1a0/AMOpvkAVOj/
→˓gzSzAIJdOwABbhj8g4pg/gM+CPoAIDD8AKwO+AOAUPAAYkb0AbFk9gCSbPgCQ3r3AhiS/
→˓AMC7v9DTJMAYyoNBpACVQBo+QkHAhrdA4I6WQFDGO8BgbPjAUFIWwQC60L9keYtASEvvwMzgL8GcL8JAGFGCwMDisb8Q+xZAKJoqQDBtyz8AtHk+gASrvgDIHz0AJqO9AIDTOwBKyj5Afw8/
→˓CCsuQJgNusBIMOHA2E1LQThjmcAgifI/
→˓cOOpwLhOk8CIyuDAcjhPQfBeysDEk5tAQlMuQdQmMsHu31JBQHRfP76GCkGAJLe+APnpvmg7S0BAAo8/
→˓gO3BPkCHPL8AkH48AOKyvQBARj0ASeA+AOUlP7BRIUDwS3jAIA+Lv0CWtcCAlug+QPBJQAhnykAWT6xBNCKpQnMzREMlCINDiYRoQ5SeCUN8DbBCeqzBQVhNs8CMGsJANEmSQMCR6r9gMyZAMMcpwCBVkD9AzBW/
→˓AIAGvgD+rb0AYKM9AG0xvgCwHj0APjo/
→˓ALMbPlVfgEEbji5C4qWIQixf9ULhpDpD+eRXQwwaaUMZ33lDlUWEQ+hPhEPRDmxDBc9vQ9ghOkPW801C4LiRP6ApjL8A3b6/
→˓wD8Qv5BwR8AYeBlAQJkQPwBGib0AXPu9ALyQvgDuAb8AsjC+gFa1PpALZsAQGXpCfog0Q420TkOrvXVDPwGAQ+0Ja0MCUIND349jQ3m7XUPSulRDuNN9Q+KCiUOQ7nJDoDMiQ1iV/
→˓0FwUtPB0KBHwFCzmMCY0jFAEJY+QAASAD8AEB48AH7dvUDlBb/gf5s/wNkbP7j/
→˓m8CUfCZBs+AWQwP7kUM1uXtDVORsQ6WmZkMBm19DQYo7Q7a73ELCkHZC5qGpQitFGUPuzzFDq591Q9R0gkNkGNlCyMzUQOD5McAANVE/
→˓oNiYP6CJOkDABoY/AIzpvgCUub0AJHm+mHkNQEhSAkDgXjfBWmWSQtXGf0NZ/4hDei4pQ/
→˓Y+0EI2MuZCjG6vQgaiTELYvbjAhFZMwXjWJEDAL9JATp6UQtNkV0MCF5hDNspMQ7CCREJAqjXAUO25P5DMrMBQXrE/
→˓AEJ2PgBVlD4AVNW9AHcWvnCSJUAAIK68OAYTQL4IDUPL7YhD3BpBQ8FrhUIYwwhBENWfQah3JsHQHmPBUPhvwKB1qD9xgJ9BqHRLwSRMnUEaDjtDH42LQyFpZ0OkL4FC4AeGvyC1xb8IAZjAAFmAPwAQTr0AGuY9ALTJvQCgPzzIpQJAwJ2fvwmmt0HYtRZDClxnQ0SeCUPiN2NB9l3AwSRnHcFAVvi/
→˓8h0BQYSd/kDgiYw/
→˓oDYewHSBHcF4fgdCqmcdQzJjbkO76UdD604fQvjOikDAv0XAgHzXv0Dzlz+Ahdy+ACDeOwCgmL0A+Bs90Pa4P2A4979chMVBFAT4QtDeWkMXER9DnMRRQiiD+8DAPEk/
→˓vPw+Qd4IHkEoOlhAAHznvaQTMEHMJGvB/PKLQlo7UkMeAHpDQGZDQ8g6SUEwigJAoGJFwAAIXD5QRL0/
→˓wJVXvwDAubwAiNC9AIjePEDnIT+gzua/SCv1QMqntUK+OH5D5QBvQzDu/kIsa/
→˓hAHoC6wfC1TMAgfjnAAE9NvvoGqUEorejAQBQiwYD1aUKBYFxDDWyGQxBIZEMbzxBC0FV6wAA6GT/A8ts/
→˓kLgGQACQDj0A0A68AP6lvQDI+DzA+wA/
→˓4COsv8xKB8GHYm9Ca3VpQ+J8lkOF8mNDAhDEQih8uEAMDiLBQNNBwMAeM0AkZz5BPExjwQR2hcEqD4xCUjNaQw5UhUOjoXpDAe2bQnApncDwh8FAAF/
→˓PPzAPDkAACkO+ABQMPQDamL0AgAQ7AHDIPmDnxr+EHQXBuB3lQdzD00KvC3lDmGGXQ261bUNh3wtDmsmJQqzvCcHY947AyMbrQEinrUCen1hCNNAXQwKSeEPyI3pDq82CQ8QUw0IAwWS+yOqSQMCQBEBwV+U/
→˓gCGiPgAQU7wAOKi9AOjJPACd0T5AouO/AG8MPnaNHkHglow/

(continues on next page)

152 Chapter 2. Documentation

EIR

(continued from previous page)

→˓ZL37Qiv7ZkOx0IRD2AR+Q0jSMkNw4fFCmsacQtb710JgWxVD2tQ9Q95WXUMrNHNDfap8Q4XLakPqnZZCAK9jPwBY9bwA+rW9AJosP4Dghr4AuJk8ABTuvQAEWD1A1Uq/
→˓IHorwBA63T+w21lAoHoswURNf0HI5NBCzCoxQ9ZoikPp/
→˓ZFDMjt5Q7xBZUOV9lVDoTOGQ6XdiEMY4YJDxrBvQ0f6bEOcKy5DtDecQahyJUAAsQc+oEaCvwDd+T6AgPq+AMDDPACYlb0AoAc+MIodwODb+b8geDDAAEjpPkQn5kAkKEbBPdDqQShEG0L8TzJDuthrQ2trZEPUI1pDCGghQ2utT0MmhFhD6DZuQy2eiUOC0G5D34UNQ3Ad7cCwJdI/
→˓gLplv7BCRcDAFFY/AO1LvgAo0TwA9KG9ABB6PPC6GMAA5ME+KO/
→˓FwIAatb4wZxrAsDfXP4KbnUGg2DrBDkSoQSXagkKE/
→˓q9CbK6BQs2Ju0EtvgdCsJe0QnsDKkM5lJBDS6yAQ+U4F0ObNbJBoJD7v8CUhr8AkKy/
→˓gPLqvgD2N74AqGQ9ADS4vQC2ij3AtZa/
→˓qA8pQGACz794JDRAgJHOvsCF1r80rJ5BFFiCQEQaDcFs0wbBwKndwPY3HEGUPyDBNE0vwTDemEFIkBhDXsmNQ5Ftg0OQxflCJgj/
→˓QcDBaz8AYoW9MKb4P0BEpL8AXkS+ANibPADk0L0A8pm9ACiKPUgLAkBADq4/OIZIQABbGD5gqb6/wFtbwKBu/
→˓kDgtv2/0HciwLSBA8F0LWtBlIuPQGqJg8FQZNNBfqgQQ6XeiENByIZDxtnwQnaR+UEI31lAoNK9P8DKxT8A8xK/
→˓AOyUvgDAQ7wAbpa9AAAsPQCC4L2AcrA+gJFDv/Dz/T+AQAu/
→˓oAbDP3zyG0GINMPAiC63wEB6hUDgtOTAepYGQaSYC8Fgqo8/
→˓UPrfwEqFtkJau2pDtdCRQ2lbNUPcgOdBwBOoP4C1ZD9A0Vc/
→˓ALqYvYAjbr8AgN+6AMKXvQDoKT0Aebc+AEdtvkBMYb9AwHm/
→˓QJxJwGCLgD8AfD4+eKqzwETPhEBI2QNBCNqoQOB8ocFEPaNAhFq+QELnucGc85tCnhQ/
→˓Q8ATmEPUJ0JDDmipQQCgSD4AwVo+AN1JPgAM5T0AdO69AHALvAAap70APB49AJBnPgCIhzwAaRS+IJGnvyhUhsCIRARA6KkqQACoqT5QCcBAwNcHP8CEkEDCY6NBql1vQfTrJsG53wnC+a4KQqCp6UIlWFtDxg7gQmyrKkEA1aI+AAnHPgArJD4Aqpa9AE0JvgAgvrsAAKa9ALBKPQDNMj4AgDw7AI7cvUBiIb/
→˓ADQzA0DEGQECECUBQ7gLABMamQPCbKMCAwcrAdvgLQRxKE8GsaBnBThCEwdIjAEHJTARC7BGIQgu3E0L0rJdAQCwFPwBw6jwAAKC6AOhXvQCw3b0AoOq7AGalvQB8Mj0AWTI+AAATOgDgg7sAqKg8AORbPQBSnj3ABHE/
→˓IJXSvwD/dT6Ad9o/gJCRv+C4rz8QDA3AQJKuPwB0pT5AtFs/
→˓gHkgQPQuiEAw4nRAADBbvAAsL70AAE48AICTOgDoX70A/QS+AACZug=="

}
}

}
]

For example, using the approach described above, we can visualize the generated images from the responses:

2.3. Array Generation 153

EIR

If you made it this far, thank you for reading! I hope this tutorial was interesting and useful to you!

2.4 Pretraining

2.4.1 01 – Pretraining, Checkpointing and Continued Training

In this tutorial, we will be looking at how to use EIR to create pretrained models, and successively use them for continued
training on the same data, as well as partially loading matching layers when changing the model architecture.

Note: This tutorial assumes you are familiar with the basics of EIR, and have gone through previous tutorials. Not
required, but recommended.

A - Data

We will be using the same dataset we used in the 03 – Sequence Tutorial: Movie Reviews and Peptides: the IMDB
reviews dataset, and we will be repeating the same task as before, i.e., sentiment classification.

See here for more information about the data. To download the data, use this link.

After downloading the data, the folder structure should look like this:

eir_tutorials/e_pretraining/01_checkpointing
conf

imdb_fusion.yaml
imdb_globals.yaml
imdb_input.yaml
imdb_output.yaml

data
IMDB

IMDB_Reviews
conf
imdb.vocab
imdb_labels.csv

154 Chapter 2. Documentation

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://drive.google.com/file/d/1u6bkIr9sECkU9z3Veutjn8cx6Mu3GP3Z

EIR

B - Training a Model From Scratch

Training follows the same approach as we have seen on other tutorials, starting with the configurations.

The global config sets the universal parameters for training:

Listing 107: imdb_globals.yaml

output_folder: eir_tutorials/tutorial_runs/e_pretraining/01_checkpointing
valid_size: 1024
n_saved_models: 1
checkpoint_interval: 200
plot_skip_steps: 0
sample_interval: 200
memory_dataset: true
dataloader_workers: 0
n_epochs: 5
batch_size: 64
lr: 0.0005
optimizer: "adabelief"
device: "cpu"

The input config outlines the IMDB dataset’s specific structure:

Listing 108: imdb_input.yaml

input_info:
input_source: eir_tutorials/e_pretraining/01_checkpointing/data/IMDB/IMDB_Reviews
input_name: captions
input_type: sequence

input_type_info:
max_length: 64
split_on: " "
tokenizer: null
sampling_strategy_if_longer: "uniform"

model_config:
embedding_dim: 64

For the output configurations:

Listing 109: imdb_output.yaml

output_info:
output_source: eir_tutorials/e_pretraining/01_checkpointing/data/IMDB/imdb_labels.csv
output_name: imdb_output
output_type: tabular

output_type_info:
target_cat_columns:

- Sentiment

Here is the command for training:

2.4. Pretraining 155

EIR

eirtrain \
--global_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_globals.yaml \
--input_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_input.yaml \
--fusion_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_fusion.yaml \
--output_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_output.yaml \
--imdb_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/01_checkpointing/

Training Results:

So, these training results are nothing too much out of the ordinary, with the training and validation loss both decreasing
as training goes on.

C - Continuing Training from a Checkpoint

Often, you might want to resume training from a previously saved checkpoint. This can be especially useful for reasons
such as fine-tuning the model on a different dataset, or resuming a long-running training process after interruption. For
this, we can use the pretrained_checkpoint argument in the global config.

Here is how we can do that:

eirtrain \
--global_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_globals.yaml \
--input_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_input.yaml \

(continues on next page)

156 Chapter 2. Documentation

EIR

(continued from previous page)

--fusion_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_fusion.yaml \
--output_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_output.yaml \
--imdb_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/01_checkpointing_
→˓imdb_from_pretrained_global \
--imdb_globals.pretrained_checkpoint=eir_tutorials/tutorial_runs/e_pretraining/01_
→˓checkpointing/saved_models/01_checkpointing_model_1800_perf-average=0.7765.pt

Important: The argument points towards a saved model file from a previous experiment, and the loading process relies
on some saved data from the previous experiment. Therefore, it will likely not work if you try to load a checkpoint that
has been moved from the relative path it was saved in.

Training Results After Continued Training:

From the training curve, it’s evident how the model essentially picks up from where it left off as the training loss is
already quite low from the start, compared to the previous training from scratch.

2.4. Pretraining 157

EIR

D - Partial Loading of Matching Layers

There are scenarios where you might change the architecture of your model but still want to use the pretrained weights
for the layers that match. This can be achieved by setting the strict_pretrained_loading argument to False in
the global config.

Below, we will change the dimension of the fully connected layers in the fusion module, but keep the rest of the model
the same.

eirtrain \
--global_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_globals.yaml \
--input_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_input.yaml \
--fusion_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_fusion.yaml \
--output_configs eir_tutorials/e_pretraining/01_checkpointing/conf/imdb_output.yaml \
--imdb_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/01_checkpointing_
→˓imdb_from_pretrained_global_non_strict \
--imdb_fusion.model_config.fc_task_dim=64 \
--imdb_globals.pretrained_checkpoint=eir_tutorials/tutorial_runs/e_pretraining/01_
→˓checkpointing/saved_models/01_checkpointing_model_1800_perf-average=0.7765.pt \
--imdb_globals.strict_pretrained_loading=False

Results After Partial Loading and Continued Training:

Notice how the training loss starts at a similar value as when training from scratch, but then more quickly decreases to
a lower value, indicating that the model can still benefit from the pretrained weights in the unchanged layers.

158 Chapter 2. Documentation

EIR

Thank you for reading!

2.4.2 02 - Creating and Using a Mini Foundation Model

In this tutorial, we will explore how to create custom foundation models using EIR. Here we use the term “foundation
model” as a fancy way of saying we pretrain a model for one task, and then use it or parts of it as a building block for
other tasks.

We’ll be working with three different datasets —IMDB reviews, COCO 2017 images, and CIFAR-10 images.

The overall goal is as follows:

1. Train a mini-foundation model for image captioning, which includes an image and text encoder (feature extrac-
tors), and a text decoder (output module).

2. Use the text encoder part from the mini-foundation model to train a sentiment analysis model on IMDB reviews.

3. Use the image encoder part from the mini-foundation model to train an image classification model on CIFAR-10.

A - Data

For this tutorial, we will use datasets from three different domains:

1. Text Data: IMDB Reviews - More information can be found here.

2. Image Data: COCO 2017 - Used mainly for image-to-text tasks like image captioning. More details can be found
at the COCO 2017 dataset.

3. Image Data: CIFAR-10 - A dataset of 60,000 32x32 color images in 10 different classes. Useful for object
recognition tasks. Learn more here.

You can download all datasets for this tutorial from the following link.

After downloading the data, your folder structure should be organized similarly to the following (the config files we
will create as we go along the tutorial):

eir_tutorials/e_pretraining/02_mini_foundation
conf

cifar
cifar_fusion.yaml
cifar_globals.yaml
cifar_input.yaml
cifar_output.yaml

fusion.yaml
globals.yaml
imdb

imdb_fusion.yaml
imdb_globals.yaml
imdb_input.yaml
imdb_output.yaml

inputs_image_array_cnn.yaml
inputs_sequence.yaml
output_sequence.yaml

data
02_mini_foundation

configs
logging_history.log

(continues on next page)

2.4. Pretraining 159

https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://cocodataset.org/#home
https://www.cs.toronto.edu/~kriz/cifar.html
https://drive.google.com/file/d/1WyTNS5RZ4o26F9wN66ahfdVqO4GauAvv

EIR

(continued from previous page)

meta
model_info.txt
results
saved_models
serializations
tensorboard_logs
train_average_history.log
training_curve_LOSS-AVERAGE.pdf
training_curve_PERF-AVERAGE.pdf
validation_average_history.log

CIFAR10
images
images_classes.csv

IMDB
imdb_labels.csv
imdb_reviews.csv

image_captioning
captions.csv
images

vocab.txt

Notice how in the downloaded data, we actually include a 02_mini_foundation experiment. This is so that you do
not have to train the entire model from scratch, and also shows how one can share pre-trained models with others.

B - Training a Mini Foundation Model

Important: As mentioned above, you can download the pre-trained model for this tutorial and skip this section.
However, if you want to train the model yourself, you can follow the steps below.

Here, we will show the training of a model for image captioning, similar to what we did in 03 - Image to Sequence:
Image Captioning, where the model uses both an image and text input to generate a caption for the image.

The global configuration establishes the foundational settings for training:

Listing 110: globals.yaml

output_folder: eir_tutorials/tutorial_runs/e_pretraining/02_mini_foundation
valid_size: 1024
n_saved_models: 1
checkpoint_interval: 500
plot_skip_steps: 200
sample_interval: 500
memory_dataset: true
dataloader_workers: 0
n_epochs: 20
batch_size: 256
lr: 0.0005
optimizer: "adabelief"
device: "mps"

160 Chapter 2. Documentation

EIR

Listing 111: inputs_sequence.yaml

input_info:
input_source: eir_tutorials/e_pretraining/02_mini_foundation/data/image_captioning/

→˓captions.csv
input_name: text
input_type: sequence

input_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
vocab_file: eir_tutorials/e_pretraining/02_mini_foundation/data/vocab.txt
modality_dropout_rate: 0.1

model_config:
embedding_dim: 64

Listing 112: inputs_image_array_cnn.yaml

input_info:
input_source: eir_tutorials/e_pretraining/02_mini_foundation/data/image_captioning/

→˓images
input_name: image_input
input_type: image

model_config:
model_type: cnn
model_init_config:
channel_exp_base: 5
kernel_width: 2
down_stride_width: 2
kernel_height: 2
down_stride_height: 2

Listing 113: fusion.yaml

model_type: "pass-through"

Listing 114: outputs.yaml

output_info:
output_source: eir_tutorials/e_pretraining/02_mini_foundation/data/image_captioning/

→˓captions.csv
output_name: text
output_type: sequence

output_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
vocab_file: eir_tutorials/e_pretraining/02_mini_foundation/data/vocab.txt

(continues on next page)

2.4. Pretraining 161

EIR

(continued from previous page)

sampling_config:
generated_sequence_length: 64
n_eval_inputs: 10

To train, we use the following command:

eirtrain \
--global_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/globals.yaml \
--input_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/inputs_image_array_
→˓cnn.yaml eir_tutorials/e_pretraining/02_mini_foundation/conf/inputs_sequence.yaml \
--fusion_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/fusion.yaml \
--output_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/output_sequence.
→˓yaml \
--globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/02_mini_foundation

Here we can see the training curve for the mini foundation model:

Now, given that we have either downloaded or trained the mini foundation model, we can use it to train other models.

162 Chapter 2. Documentation

EIR

C - Establishing an IMDB Baseline

Before using the mini foundation model, let’s first establish a baseline by training a model from scratch to perform
sentiment analysis on IMDB reviews.

Here are the configurations:

Listing 115: imdb_globals.yaml

output_folder: eir_tutorials/tutorial_runs/e_pretraining/02_mini_foundation
valid_size: 1024
n_saved_models: 1
checkpoint_interval: 100
plot_skip_steps: 0
sample_interval: 100
memory_dataset: true
dataloader_workers: 0
n_epochs: 20
batch_size: 64
lr: 0.0005
optimizer: "adabelief"
device: "cpu"

Listing 116: imdb_input.yaml

input_info:
input_source: eir_tutorials/e_pretraining/02_mini_foundation/data/IMDB/imdb_reviews.csv
input_name: text
input_type: sequence

input_type_info:
max_length: 128
split_on: ""
sampling_strategy_if_longer: "uniform"
vocab_file: eir_tutorials/e_pretraining/02_mini_foundation/data/vocab.txt

model_config:
embedding_dim: 64

Listing 117: imdb_output.yaml

output_info:
output_source: eir_tutorials/e_pretraining/02_mini_foundation/data/IMDB/imdb_labels.csv
output_name: imdb_output
output_type: tabular

output_type_info:
target_cat_columns:

- Sentiment

To kick off the training for IMDB from scratch, run the following command:

eirtrain \
--global_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_globals.

(continues on next page)

2.4. Pretraining 163

EIR

(continued from previous page)

→˓yaml \
--input_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_input.yaml␣
→˓\
--fusion_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_fusion.
→˓yaml \
--output_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_output.
→˓yaml \
--imdb_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/02_mini_
→˓foundation_imdb_from_scratch

The performance can be evaluated through these generated plots:

This serves as our baseline, which we’ll aim to improve in the next section by using the mini foundation model.

164 Chapter 2. Documentation

EIR

D - Using the Mini Foundation Model for IMDB

In this section, we’ll use the pre-trained mini foundation model as a starting point for training our IMDB sentiment
analysis model. Specifically, we will only load the text encoder part of the mini foundation model while other parts of
the IMDB model will be trained from scratch.

While the configuration files remain the same, there is a slight change in the training command:

eirtrain \
--global_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_globals.
→˓yaml \
--input_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_input.yaml␣
→˓\
--fusion_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_fusion.
→˓yaml \
--output_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/imdb/imdb_output.
→˓yaml \
--imdb_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/02_mini_
→˓foundation_imdb_from_pretrained \
--imdb_input.pretrained_config.model_path=eir_tutorials/e_pretraining/02_mini_foundation/
→˓data/02_mini_foundation/saved_models/02_mini_foundation_model_18000_perf-average=0.
→˓0809.pt \
--imdb_input.pretrained_config.load_module_name=text

Let’s examine the performance improvements, if any:

2.4. Pretraining 165

EIR

In this specific case, the training and validation losses are very marginally lower compared to the baseline. This indi-
cates that the mini foundation model didn’t contribute significantly to enhancing the model’s performance for IMDB
sentiment analysis. One reason could be that the text data each model is trained on is very different, with the mini
foundation model being trained on somewhat robotic image captions, while the IMDB model is trained on various
movie reviews.

Note: You might notice that the the pre-trained model was trained for more iterations, this was due to early stopping
being activated earlier in the model trained from scratch, which might simply be due to randomness. Hence, the fact
that the pre-trained model performs slightly better might be due to the fact that it was trained for more iterations, not
necessarily because of the pre-training.

While the performance improvements are not significant in the text case, we will not give up on our mini foundation
model just yet. Let’s see how well the image encoder part of the mini foundation model performs when used for image
classification.

166 Chapter 2. Documentation

EIR

E - Establishing a CIFAR10 Baseline

Just like for the IMDB case, we will first establish a baseline.

Here are the configurations for the CIFAR10 baseline:

Listing 118: cifar_globals.yaml

output_folder: eir_tutorials/tutorial_runs/e_pretraining/02_mini_foundation
valid_size: 1024
n_saved_models: 1
checkpoint_interval: 100
plot_skip_steps: 0
sample_interval: 100
memory_dataset: true
dataloader_workers: 0
n_epochs: 20
batch_size: 64
lr: 0.0005
optimizer: "adabelief"
device: "mps"

Listing 119: cifar_input.yaml

input_info:
input_source: eir_tutorials/e_pretraining/02_mini_foundation/data/CIFAR10/images
input_name: image_input
input_type: image

model_config:
model_type: cnn
model_init_config:
channel_exp_base: 5
kernel_width: 2
down_stride_width: 2
kernel_height: 2
down_stride_height: 2

Listing 120: cifar_output.yaml

output_info:
output_source: eir_tutorials/e_pretraining/02_mini_foundation/data/CIFAR10/images_

→˓classes.csv
output_name: cifar_output
output_type: tabular

output_type_info:
target_cat_columns:

- Class

To initiate the training for CIFAR10 from scratch, execute the following command:

eirtrain \
--global_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_globals.

(continues on next page)

2.4. Pretraining 167

EIR

(continued from previous page)

→˓yaml \
--input_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_input.
→˓yaml \
--fusion_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_fusion.
→˓yaml \
--output_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_output.
→˓yaml \
--cifar_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/02_mini_
→˓foundation_cifar_from_scratch

Training curve:

This will serve as our baseline for CIFAR10, which we will compare against the model that uses the image encoder
from the mini foundation model in the next section.

168 Chapter 2. Documentation

EIR

F - Using the Mini Foundation Model for CIFAR10

In this section, we’ll use the pre-trained mini foundation model for CIFAR10 image classification. Specifically, we’ll
load only the image encoder from the mini foundation model, while the rest of the CIFAR10 model will be trained from
scratch.

Again, the configuration files for this step are the same as in the baseline, with one change in the training command:

eirtrain \
--global_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_globals.
→˓yaml \
--input_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_input.
→˓yaml \
--fusion_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_fusion.
→˓yaml \
--output_configs eir_tutorials/e_pretraining/02_mini_foundation/conf/cifar/cifar_output.
→˓yaml \
--cifar_globals.output_folder=eir_tutorials/tutorial_runs/e_pretraining/02_mini_
→˓foundation_cifar_from_pretrained \
--cifar_input.pretrained_config.model_path=eir_tutorials/e_pretraining/02_mini_
→˓foundation/data/02_mini_foundation/saved_models/02_mini_foundation_model_18000_perf-
→˓average=0.0809.pt \
--cifar_input.pretrained_config.load_module_name=image_input

Now, let’s review the impact on performance:

2.4. Pretraining 169

EIR

In contrast to the text-based IMDB model, the CIFAR10 model shows improvements in both the speed of convergence
(e.g., the loss at iteration 1500 is lower for the pre-trained model than the model trained from scratch) and the final
performance when initialized with the image encoder from the mini foundation model.

These results suggest that the image encoder from the mini foundation model can be transferred to image classification,
indicating that one can successfully train and, in a modular fashion, transfer parts of a model to other tasks.

Thank you very much for reading this tutorial!

2.5 Customizing EIR

2.5.1 01 – Customizing EIR: Customized Fusion Tutorial

A - Setup

In this tutorial, we will be looking at how to customize EIR. Specifically, we will be writing our own fusion module
through the EIR Python API.

If you want to skip straight to the code, you can find it here: D - Full Code.

170 Chapter 2. Documentation

EIR

B - Writing a custom fusion module

Here, we will write a custom fusion module that uses an LSTM to fuse the outputs of the individual feature extractors
included in EIR. This is a bit of a contrived example, since, we are only using one input modality, but hopefully it will
serve as a good example of how to write a custom fusion module.

First, we define our LSTM fusion module. There are two specific things to note here:

1. We need to define a num_out_features attribute / property. This is used to determine the size of the output of
the fusion module, which subsequent output modules use.

2. The forward method takes a dictionary of inputs, where the keys are the names of the input modalities and the
values are the outputs of the corresponding feature extractors. The forwardmethod should return a single tensor
that is the output of the fusion module.

class MyLSTMFusionModule(nn.Module):
def __init__(self, fusion_in_dim: int, out_dim: int):

"""
An example of a custom fusion module. Here we use a simple LSTM to
fuse the inputs, but you could use any PyTorch module here.
"""
super().__init__()

self.fusion_in_dim = fusion_in_dim
self.out_dim = out_dim

self.fusion = nn.LSTM(
input_size=fusion_in_dim,
hidden_size=self.out_dim,
num_layers=1,
batch_first=True,

)

@property
def num_out_features(self) -> int:

return self.out_dim

def forward(self, inputs: Dict[str, FeatureExtractorProtocol]) -> al_fused_features:
features = torch.cat(tuple(inputs.values()), dim=1)
assert features.shape[1] == self.fusion_in_dim

out, *_ = self.fusion(features)

return out

Having defined our fusion module, we now want to register and run our experiment (which is using our custom fusion
module) with EIR. For this demo, we will be use a little function that replaces a couple of attributes in a default
experiment, but there are other ways to do this as well. Of note:

1. After defining our fusion module, we also set up the output modules by calling get_output_modules. This is
necessary because the output modules need to know the size of the output coming from the fusion module.

2. We are using the default MetaModel module included in EIR, which is a simple wrapper around the input, fusion
and output modules. But you could also use a custom module here.

2.5. Customizing EIR 171

EIR

def modify_experiment(experiment: train.Experiment) -> train.Experiment:
my_experiment_attributes = experiment.__dict__

input_modules = experiment.model.input_modules
fusion_in_dim = sum(i.num_out_features for i in input_modules.values())

my_fusion_module = MyLSTMFusionModule(fusion_in_dim=fusion_in_dim, out_dim=128)
my_fusion_modules = nn.ModuleDict({"computed": my_fusion_module})

my_output_modules, _ = get_output_modules(
outputs_as_dict=experiment.outputs,
computed_out_dimensions=my_fusion_module.num_out_features,
device=experiment.configs.global_config.device,

)

my_model = MetaModel(
input_modules=input_modules,
fusion_modules=my_fusion_modules,
output_modules=my_output_modules,
fusion_to_output_mapping={"ancestry_output": "computed"},

)

my_optimizer = torch.optim.Adam(
params=my_model.parameters(),
lr=1e-4,

)

my_experiment_attributes["model"] = my_model
my_experiment_attributes["optimizer"] = my_optimizer

my_experiment = train.Experiment(**my_experiment_attributes)

return my_experiment

Finally, we can run our experiment with our custom fusion module. Here we are reusing a couple of functions from
eir.train.

def main():
configs = get_configs()

configure_global_eir_logging(output_folder=configs.global_config.output_folder)

default_hooks = step_logic.get_default_hooks(configs=configs)
default_experiment = train.get_default_experiment(

configs=configs,
hooks=default_hooks,

)

my_experiment = modify_experiment(experiment=default_experiment)

train.run_experiment(experiment=my_experiment)

172 Chapter 2. Documentation

EIR

C - Running the custom fusion module

Having defined our custom fusion module and experiment above, we can now run our experiment.

To start, please download processed sample data, The sample data we are using here for predicting ancestry is the public
Human Origins dataset, which we have used in previous tutorials (see 01 – Genotype Tutorial: Ancestry Prediction).

We also have our configuration files:

output_folder: eir_tutorials/tutorial_runs/b_customizing_eir/tutorial_01_run
checkpoint_interval: 200
sample_interval: 200
n_epochs: 15

input_info:
input_source: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/

→˓arrays
input_name: genotype
input_type: omics

input_type_info:
snp_file: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/data_

→˓final_gen.bim

model_config:
model_type: genome-local-net

output_info:
output_name: ancestry_output
output_source: eir_tutorials/a_using_eir/01_basic_tutorial/data/processed_sample_data/

→˓human_origins_labels.csv
output_type: tabular

output_type_info:
target_cat_columns:

- Origin

Now we can train, using our custom module but taking advantage of the rest of the default EIR functionalities.

python \
docs/doc_modules/b_customizing_eir/a_customizing_fusion.py \
--global_configs eir_tutorials/b_customizing_eir/01_customizing_fusion.rst/conf/tutorial_
→˓01_globals.yaml \
--input_configs eir_tutorials/b_customizing_eir/01_customizing_fusion.rst/conf/tutorial_
→˓01_input.yaml \
--output_configs eir_tutorials/b_customizing_eir/01_customizing_fusion.rst/conf/tutorial_
→˓01_outputs.yaml

Note: Note that now we are not using the eirtrain command, but instead we are using python to run our script.

Let’s confirm that we used our now model by looking at the model_info.txt file:

MetaModel(
(input_modules): ModuleDict(

(continues on next page)

2.5. Customizing EIR 173

https://drive.google.com/file/d/1MELauhv7zFwxM8nonnj3iu_SmS69MuNi
https://www.nature.com/articles/nature13673

EIR

(continued from previous page)

(genotype): LCLModel(
(fc_0): LCL(in_features=4000, num_chunks=500, kernel_size=8, out_feature_sets=4,␣

→˓out_features=2000, bias=True)
(lcl_blocks): Sequential(
(0): LCLResidualBlock(
(norm_1): LayerNorm((2000,), eps=1e-05, elementwise_affine=True)
(fc_1): LCL(in_features=2000, num_chunks=125, kernel_size=16, out_feature_

→˓sets=4, out_features=500, bias=True)
(act_1): Swish(num_parameters=1)
(do): Dropout(p=0.1, inplace=False)
(fc_2): LCL(in_features=500, num_chunks=32, kernel_size=16, out_feature_sets=4,

→˓ out_features=128, bias=True)
(downsample_identity): LCL(in_features=2000, num_chunks=128, kernel_size=16,␣

→˓out_feature_sets=1, out_features=128, bias=True)
(stochastic_depth): StochasticDepth(p=0.0, mode=batch)

)
)

)
)
(fusion_modules): ModuleDict(
(computed): MyLSTMFusionModule(

(fusion): LSTM(128, 128, batch_first=True)
)

)
(output_modules): ModuleDict(
(ancestry_output): ResidualMLPOutputModule(
(multi_task_branches): ModuleDict(
(Origin): Sequential(
(0): Sequential(
(0): Sequential(
(0): MLPResidualBlock(
(norm_1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(fc_1): Linear(in_features=128, out_features=256, bias=True)
(act_1): Swish(num_parameters=1)
(do): Dropout(p=0.1, inplace=False)
(fc_2): Linear(in_features=256, out_features=256, bias=True)
(downsample_identity): Linear(in_features=128, out_features=256,␣

→˓bias=True)
(stochastic_depth): StochasticDepth(p=0.1, mode=batch)

)
)
(1): Sequential(
(0): MLPResidualBlock(
(norm_1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc_1): Linear(in_features=256, out_features=256, bias=True)
(act_1): Swish(num_parameters=1)
(do): Dropout(p=0.1, inplace=False)
(fc_2): Linear(in_features=256, out_features=256, bias=True)
(stochastic_depth): StochasticDepth(p=0.1, mode=batch)

)
)

)

(continues on next page)

174 Chapter 2. Documentation

EIR

(continued from previous page)

(1): Sequential(
(norm_final): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(act_final): Swish(num_parameters=1)
(do_final): Dropout(p=0.1, inplace=False)

)
(2): Sequential(
(final): Linear(in_features=256, out_features=6, bias=True)

)
)

)
)

)
)

So, we can use that our experiment used our custom fusion module, MyLSTMFusionModule.

Now let’s have a look at how well our model did w.r.t. accuracy:

Not too bad! We can also look at the confusion matrix:

2.5. Customizing EIR 175

EIR

This marks the end of our tutorial on customizing the fusion module in EIR. In the future, there might be more tutorials
customizing other aspects of EIR (e.g., the input modules, output modules, etc.), but for now, hopefully this tutorial
was helpful.

D - Full Code

from typing import Dict

import torch
from torch import nn

from eir import train
from eir.models.meta.meta import FeatureExtractorProtocol, MetaModel, al_fused_features
from eir.models.model_setup_modules.meta_setup import get_output_modules
from eir.setup.config import get_configs
from eir.train_utils import step_logic
from eir.train_utils.utils import configure_global_eir_logging

def main():
(continues on next page)

176 Chapter 2. Documentation

EIR

(continued from previous page)

configs = get_configs()

configure_global_eir_logging(output_folder=configs.global_config.output_folder)

default_hooks = step_logic.get_default_hooks(configs=configs)
default_experiment = train.get_default_experiment(

configs=configs,
hooks=default_hooks,

)

my_experiment = modify_experiment(experiment=default_experiment)

train.run_experiment(experiment=my_experiment)

class MyLSTMFusionModule(nn.Module):
def __init__(self, fusion_in_dim: int, out_dim: int):

"""
An example of a custom fusion module. Here we use a simple LSTM to
fuse the inputs, but you could use any PyTorch module here.
"""
super().__init__()

self.fusion_in_dim = fusion_in_dim
self.out_dim = out_dim

self.fusion = nn.LSTM(
input_size=fusion_in_dim,
hidden_size=self.out_dim,
num_layers=1,
batch_first=True,

)

@property
def num_out_features(self) -> int:

return self.out_dim

def forward(self, inputs: Dict[str, FeatureExtractorProtocol]) -> al_fused_features:
features = torch.cat(tuple(inputs.values()), dim=1)
assert features.shape[1] == self.fusion_in_dim

out, *_ = self.fusion(features)

return out

def modify_experiment(experiment: train.Experiment) -> train.Experiment:
my_experiment_attributes = experiment.__dict__

input_modules = experiment.model.input_modules
fusion_in_dim = sum(i.num_out_features for i in input_modules.values())

(continues on next page)

2.5. Customizing EIR 177

EIR

(continued from previous page)

my_fusion_module = MyLSTMFusionModule(fusion_in_dim=fusion_in_dim, out_dim=128)
my_fusion_modules = nn.ModuleDict({"computed": my_fusion_module})

my_output_modules, _ = get_output_modules(
outputs_as_dict=experiment.outputs,
computed_out_dimensions=my_fusion_module.num_out_features,
device=experiment.configs.global_config.device,

)

my_model = MetaModel(
input_modules=input_modules,
fusion_modules=my_fusion_modules,
output_modules=my_output_modules,
fusion_to_output_mapping={"ancestry_output": "computed"},

)

my_optimizer = torch.optim.Adam(
params=my_model.parameters(),
lr=1e-4,

)

my_experiment_attributes["model"] = my_model
my_experiment_attributes["optimizer"] = my_optimizer

my_experiment = train.Experiment(**my_experiment_attributes)

return my_experiment

if __name__ == "__main__":
main()

2.6 API

2.6.1 Configuration API

• Global Configurations

• Input Configurations

– Input Data Configuration

– Input Type Configurations

– Input Model Configurations

– Interpretation Configurations

• Feature Extractor Configurations

– Omics Feature Extractors

178 Chapter 2. Documentation

EIR

– Tabular Feature Extractors

– Sequence and Binary Feature Extractors

– Image Feature Extractors

– Array Feature Extractors

• Fusion Configurations

– Fusion Module Configuration

• Output Configurations

– Output Info Configuration

– Output Type Configuration

– Output Module Configuration

– Output Sampling Configuration

Global Configurations

2.6. API 179

EIR

class eir.setup.schemas.GlobalConfig(output_folder: str, n_epochs: int = 10, batch_size: int = 64,
valid_size: float | int = 0.1, manual_valid_ids_file: str | None =
None, dataloader_workers: int = 0, device: str = 'cpu',
n_iter_before_swa: None | int = None, amp: bool = False,
compile_model: bool = False, weighted_sampling_columns: None |
Sequence[str] = None, lr: float = 0.001, lr_lb: float = 0.0, find_lr:
bool = False, lr_schedule: Literal['cycle', 'plateau', 'same', 'cosine']
= 'plateau', lr_plateau_patience: int = 10, lr_plateau_factor: float
= 0.2, gradient_clipping: float = 1.0, gradient_accumulation_steps:
None | int = None, gradient_noise: float = 0.0,
cat_averaging_metrics: al_cat_averaging_metric_choices | None =
None, con_averaging_metrics: al_con_averaging_metric_choices |
None = None, early_stopping_patience: int = 10,
early_stopping_buffer: None | int = None, warmup_steps:
Literal['auto'] | int = 'auto', optimizer: Literal['accsgd'],
Literal['adabelief'], Literal['adabeliefw'], Literal['adabound'],
Literal['adahessian'], Literal['adam'], Literal['adamod'],
Literal['adamp'], Literal['adamw'], Literal['aggmo'],
Literal['diffgrad'], Literal['lamb'], Literal['lars'],
Literal['lookahead'], Literal['madgrad'], Literal['novograd'],
Literal['pid'], Literal['qhadam'], Literal['qhm'], Literal['radam'],
Literal['ranger'], Literal['rangerqh'], Literal['rangerva'],
Literal['sgdm'], Literal['sgdp'], Literal['sgdw'], Literal['shampoo'],
Literal['swats'], Literal['yogi'] = 'adam', b1: float = 0.9, b2: float =
0.999, wd: float = 0.0001, memory_dataset: bool = False,
sample_interval: int = 200, save_evaluation_sample_results: bool =
True, checkpoint_interval: None | int = None, n_saved_models: int =
1, compute_attributions: bool = False, max_attributions_per_class:
None | int = None, attributions_every_sample_factor: int = 1,
attribution_background_samples: int = 256, plot_lr_schedule: bool
= False, no_pbar: bool = False, log_level: Literal['debug', 'info',
'warning', 'error', 'critical'] = 'info', mixing_alpha: float = 0.0,
plot_skip_steps: int = 200, pretrained_checkpoint: None | str =
None, strict_pretrained_loading: bool = True, latent_sampling:
LatentSamplingConfig | None = None)

Global configurations that are common / relevant for the whole experiment to run.

Parameters
• output_folder – What to name the experiment and output folder where results are saved.

• n_epochs – Number of epochs for training.

• batch_size – Size of batches during training.

• valid_size – Size if the validation set, if float then uses a percentage. If int, then raw
counts.

• manual_valid_ids_file – File with IDs of those samples to manually use as the validation
set. Should be one ID per line in the file.

• dataloader_workers – Number of workers for multiprocess training and validation data
loading.

• device – Device to run the training on (e.g. ‘cuda:0’ / ‘cpu’ / ‘mps’). ‘mps’ is currently
experimental, and might not work for all models.

180 Chapter 2. Documentation

EIR

• n_iter_before_swa – Number of iterations to run before activating Stochastic Weight Av-
eraging (SWA).

• amp – Whether to use Automatic Mixed Precision. Currently only supported when training
on GPUs.

• compile_model – Whether to compile the model before training. This can be useful to
speed up training, but may not work for all models.

• weighted_sampling_columns – Target column to apply weighted sampling on. Only
applies to categorical columns. Passing in ‘all’ here will use an average of all the target
columns.

• lr – Base learning rate for optimizer.

• lr_lb – Lower bound for learning rate when using LR scheduling

• find_lr – Whether to perform a range test of different learning rates, with the lower limit
being what is passed in for the –lr flag. Produces a plot and exits with status 0 before training
if this flag is active.

• lr_schedule – Whether to use cyclical, cosine or reduce on plateau learning rate schedule.
Otherwise keeps same learning rate

• lr_plateau_patience – Number of validation performance steps without improvement
over best performance before reducing LR (only relevant when –lr_schedule is ‘plateau’.

• lr_plateau_factor – Factor to reduce LR when running with plateau schedule.

• gradient_clipping – Max norm used for gradient clipping, with p=2.

• gradient_accumulation_steps – Number of steps to use for gradient accumulation.

• gradient_noise – Gradient noise to inject during training.

• cat_averaging_metrics – Which metrics to use for averaging categorical targets. If not
set, will use the default metrics for the task type.

• con_averaging_metrics – Which metrics to use for averaging continuous targets. If not
set, will use the default metrics for the task type.

• early_stopping_patience – Number of validation performance steps without improve-
ment over best performance before terminating run.

• early_stopping_buffer – Number of iterations to run before activating early stopping
checks, useful if networks take a while to ‘kick into gear’.

• warmup_steps – How many steps to use in warmup. If not set, will automatically compute
the number of steps if using an adaptive optimizer, otherwise use 2000.

• optimizer – What optimizer to use.

• b1 – Decay of first order momentum of gradient for relevant optimizers.

• b2 – Decay of second order momentum of gradient for relevant optimizers.

• wd – Weight decay.

• memory_dataset – Whether to load all sample into memory during training.

• sample_interval – Iteration interval to perform validation and possibly attribution analy-
sis if set.

• save_evaluation_sample_results – Whether to save evaluation results (e.g. confusion
matrix for classification tasks, regression plot and predictions for regression tasks). Setting
to False can be useful to save space during large scale experiments.

2.6. API 181

EIR

• checkpoint_interval – Iteration interval to checkpoint (i.e. save) model.

• n_saved_models – Number of top N models to saved during training.

• compute_attributions – Whether to compute attributions / feature importance scores
(using integrated gradients) assigned by the model with respect to the input features.

• max_attributions_per_class – Maximum number of samples per class to gather for
attribution / feature importance analysis. Good to use when modelling on imbalanced data.

• attributions_every_sample_factor – Controls whether the attributions / feature im-
portance values are computed at every sample interval (=1), every other sample interval (=2),
etc. Useful when computing the attributions takes a long time and we don’t want to do it every
time we evaluate.

• attribution_background_samples – Number of samples to use for the background in
attribution / feature importance computations.

• plot_lr_schedule – Whether to run LR search, plot the results and exit with status 0.

• no_pbar – Whether to not use progress bars. Useful when stdout/stderr is written to files.

• log_level – Logging level to use. Can be one of ‘debug’, ‘info’, ‘warning’, ‘error’, ‘critical’.

• mixing_alpha – Alpha parameter used for mixing (higher means more mixing).

• plot_skip_steps – How many iterations to skip in plots.

• pretrained_checkpoint – Path to a pretrained checkpoint model file (under
saved_models/ in the experiment output folder) to load and use as a starting point for
training.

• strict_pretrained_loading – Whether to enforce that the loaded pretrained model ex-
actly the same architecture as the current model. If False, will only load the layers that match
between the two models.

• latent_sampling – Configuration to use for latent sampling.

Input Configurations

class eir.setup.schemas.InputConfig(input_info: InputDataConfig, input_type_info:
OmicsInputDataConfig | TabularInputDataConfig |
SequenceInputDataConfig | ByteInputDataConfig |
ImageInputDataConfig | ArrayInputDataConfig, model_config:
OmicsModelConfig | TabularModelConfig | ImageModelConfig |
SequenceModelConfig | ArrayModelConfig, pretrained_config: None
| BasicPretrainedConfig = None, interpretation_config: None |
BasicInterpretationConfig = None)

Parameters
• input_info – Information about the input source, name and type.

• input_type_info – Information specific to the input type, e.g. some augmentations are
only relevant for omics input. Another example is the type of model to apply to the input.

• model_config – Configuration for the chosen model (i.e. feature extractor) for this input.

• pretrained_config – Configuration for using leveraging pretraining from a previous ex-
periment.

• interpretation_config – Configuration for interpretation analysis when applicable.

182 Chapter 2. Documentation

EIR

Input Data Configuration

class eir.setup.schemas.InputDataConfig(input_source: str, input_name: str, input_type: Literal['omics',
'tabular', 'sequence', 'image', 'bytes', 'array'], input_inner_key:
None | str = None)

Parameters
• input_source – Where on the filesystem to locate the input.

• input_name – Name to identify the input.

• input_type – Type of the input.

• input_inner_key – Inner key to use for the input. Only used when input_source is a
deeplake dataset.

Input Type Configurations

class eir.setup.schemas.OmicsInputDataConfig(snp_file: str | None = None, subset_snps_file: str | None =
None, na_augment_alpha: float = 1.0, na_augment_beta:
float = 5.0, shuffle_augment_alpha: float = 0.0,
shuffle_augment_beta: float = 0.0, omics_format:
Literal['one-hot'] = 'one-hot', mixing_subtype:
Literal['mixup', 'cutmix-block', 'cutmix-uniform'] =
'mixup', modality_dropout_rate: float = 0.0)

Parameters
• snp_file – Path to the relevant .bim file, used for attribution analysis.

• subset_snps_file – Path to a file with corresponding SNP IDs to subset from the main
arrays for the modelling. Requires the snp_file parameter to be passed in.

• na_augment_alpha – Used to control the extent of missing data augmentation in the omics
data. A value is sampled from a beta distribution, and the sampled value is used to set a
percentage of the SNPs to be ‘missing’.

The alpha () parameter of the beta distribution, influencing the shape of the distribution
towards 1. Higher values of alpha (compared to beta) bias the distribution to sample larger
percentages of SNPs to be set as ‘missing’, leading to a higher likelihood of missingness.
Conversely, lower values of alpha (compared to beta) result in sampling lower percentages,
thus reducing the probability and extent of missingness. For example, setting alpha to 1.0
and beta to 5.0 will skew the distribution towards lower percentages of missingness, since
beta is significantly larger. Setting alpha to 5.0 and beta to 1.0 will skew the distribution
towards higher percentages of missingness, since alpha is significantly larger. Examples: -
alpha = 1.0, beta = 9.0: =E(X)=0.05, =SD(X)=0.0476 (avg 5% missing) - alpha = 1.0, beta
= 4.0: =E(X)=0.2, =SD(X)=0.1633 (avg 20% missing)

• na_augment_beta – Used to control the extent of missing data augmentation in the omics
data. A value is sampled from a beta distribution, and the sampled value is used to set a
percentage of the SNPs to be ‘missing’.

Beta () parameter of the beta distribution, influencing the shape of the distribution towards 0.
Higher values of beta (compared to alpha) bias the distribution to sample smaller percentages
of SNPs to be set as ‘missing’, leading to a lower likelihood and extent of missingness.
Conversely, lower values of beta (compared to alpha) result in sampling larger percentages,
thus increasing the probability and extent of missingness.

2.6. API 183

EIR

• shuffle_augment_alpha – Used to control the extent of shuffling data augmentation in
the omics data. A value is sampled from a beta distribution, and the sampled value is used
to determine the percentage of the SNPs to be shuffled.

The alpha () parameter of the beta distribution, influencing the shape of the distribution
towards 1. Higher values of alpha (compared to beta) bias the distribution to sample larger
percentages of SNPs to be shuffled, leading to a higher likelihood of extensive shuffling.
Conversely, lower values of alpha (compared to beta) result in sampling lower percentages,
thus reducing the extent of shuffling. Setting alpha to a significantly larger value than beta
will skew the distribution towards higher percentages of shuffling. Examples: - alpha =
1.0, beta = 9.0: =E(X)=0.05, =SD(X)=0.0476 (avg 5% shuffled) - alpha = 1.0, beta = 4.0:
=E(X)=0.2, =SD(X)=0.1633 (avg 20% shuffled)

• shuffle_augment_beta – Used to control the extent of shuffling data augmentation in the
omics data. A value is sampled from a beta distribution, and the sampled value is used to
determine the percentage of the SNPs to be shuffled.

Beta () parameter of the beta distribution, influencing the shape of the distribution towards
0. Higher values of beta (compared to alpha) bias the distribution to sample smaller percent-
ages of SNPs to be shuffled, leading to a lower likelihood and extent of shuffling. Conversely,
lower values of beta (compared to alpha) result in sampling larger percentages, thus increas-
ing the likelihood and extent of shuffling.

• omics_format – Currently unsupported (i.e. does nothing), which format the omics data is
in.

• mixing_subtype – Which type of mixing to use on the omics data given that
mixing_alpha is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

class eir.setup.schemas.TabularInputDataConfig(input_cat_columns: ~typing.Sequence[str] =
<factory>, input_con_columns: ~typing.Sequence[str]
= <factory>, label_parsing_chunk_size: None | int =
None, mixing_subtype: ~typing.Literal['mixup'] =
'mixup', modality_dropout_rate: float = 0.0)

Parameters
• input_cat_columns – Which columns to use as a categorical inputs from the
input_source specified in the input_info field of the relevant .yaml.

• input_con_columns – Which columns to use as a continuous inputs from the
input_source specified in the input_info field of the relevant .yaml.

• label_parsing_chunk_size – Number of rows to process at time when loading in the
input_source. Useful when RAM is limited.

• mixing_subtype – Which type of mixing to use on the tabular data given that
mixing_alpha is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

184 Chapter 2. Documentation

EIR

class eir.setup.schemas.SequenceInputDataConfig(vocab_file: None | str = None, max_length: int |
Literal['max', 'average'] = 'average',
sampling_strategy_if_longer: Literal['from_start',
'uniform'] = 'uniform', min_freq: int = 10, split_on:
str | None = ' ', tokenizer:
Union[Literal['basic_english'], Literal['spacy'],
Literal['moses'], Literal['toktok'], Literal['revtok'],
Literal['subword'], Literal['bpe'], NoneType] = None,
tokenizer_language: str | None = None,
adaptive_tokenizer_max_vocab_size: int | None =
None, mixing_subtype: Literal['mixup'] = 'mixup',
modality_dropout_rate: float = 0.0)

Parameters
• vocab_file – An optional text file containing pre-defined vocabulary to use for the train-

ing. If this is not passed in, the framework will automatically build the vocabulary from the
training data. Passing in a vocabulary file is therefore useful if (a) you want to manually
specify / limit the vocabulary used and/or (b) you want to save time by pre-computing the
vocabulary.

• max_length – Maximum length to truncate/pad sequences to. This can be an integer or
the values ‘max’ or ‘average’. The ‘max’ keyword will use the maximum sequence length
found in the training data, while the ‘average’ will use the average length across all training
samples.

• sampling_strategy_if_longer – Controls how sequences are truncated if they are
longer than the specified max_length parameter. Using ‘from_start’ will always truncate
from the beginning of the sequence, ensuring the the samples will always be the same during
training. Setting this parameter to uniform will uniformly sample a slice of a given sample
sequence during training. Note that for consistency, the validation/test set samples always
use the from_start setting when truncating.

• min_freq – Minimum number of times a token must appear in the total training data to
be included in the vocabulary. Note that this setting will not do anything if passing in
vocab_file.

• split_on – Which token to split the sequence on to generate separate tokens for the vocab-
ulary.

• tokenizer – Which tokenizer to use. Relevant if modelling on language, but not as much
when doing it on other arbitrary sequences.

• tokenizer_language – Which language rules the tokenizer should apply when tokenizing
the raw data.

• adaptive_tokenizer_max_vocab_size – If using an adaptive tokenizer (“bpe”), this pa-
rameter controls the maximum size of the vocabulary.

• mixing_subtype – Which type of mixing to use on the sequence data given that
mixing_alpha is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

class eir.setup.schemas.ByteInputDataConfig(max_length: int = 256, byte_encoding: Literal['uint8'] =
'uint8', sampling_strategy_if_longer: Literal['from_start',
'uniform'] = 'uniform', mixing_subtype: Literal['mixup'] =
'mixup', modality_dropout_rate: float = 0.0)

2.6. API 185

EIR

Parameters
• byte_encoding – Which byte encoding to use when reading the binary data, currently only

support uint8.

• max_length – Maximum length to truncate/pad sequences to. While in sequence models
this generally refers to words, here we are referring to number of bytes.

• sampling_strategy_if_longer – Controls how sequences are truncated if they are
longer than the specified max_length parameter. Using ‘from_start’ will always truncate
from the beginning of the byte sequence, ensuring the the samples will always be the same
during training. Setting this parameter to uniform will uniformly sample a slice of a given
sample sequence during training. Note that for consistency, the validation/test set samples
always use the from_start setting when truncating.

• mixing_subtype – Which type of mixing to use on the bytes data given that mixing_alpha
is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

class eir.setup.schemas.ImageInputDataConfig(auto_augment: bool = True, size: Sequence[int] = (64,),
resize_approach: Literal['resize', 'randomcrop',
'centercrop'] = 'resize', mean_normalization_values:
None | Sequence[float] = None,
stds_normalization_values: None | Sequence[float] =
None, num_channels: int | None = None, mixing_subtype:
Literal['mixup'] | Literal['cutmix'] = 'mixup',
modality_dropout_rate: float = 0.0)

Parameters
• auto_augment – Setting this to True will use TrivialAugment Wide augmentation.

• size – Target size of the images for training. If size is a sequence like (h, w), output size
will be matched to this. If size is an int, the image will be resized to (size, size).

• resize_approach – The method used for resizing the images. Options are: - “resize”:
Directly resize the image to the target size. - “randomcrop”: Resize the image to a larger size
than the target and then apply a random crop to the target size. - “centercrop”: Resize the
image to a larger size than the target and then apply a center crop to the target size.

• mean_normalization_values – Average channel values to normalize images with. This
can be a sequence matching the number of channels, or None. If None and using a pretrained
model, the values used for the model pretraining will be used. If None and training from
scratch, will iterate over training data and compute the running average per channel.

• stds_normalization_values – Standard deviation channel values to normalize images
with. This can be a sequence mathing the number of channels, or None. If None and using a
pretrained model, the values used for the model pretraining will be used. If None and training
from scratch, will iterate over training data and compute the running average per channel.

• num_channels – Number of channels in the images. If None, will try to infer the number
of channels from a random image in the training data.

• mixing_subtype – Which type of mixing to use on the image data given that
mixing_alpha is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

186 Chapter 2. Documentation

EIR

class eir.setup.schemas.ArrayInputDataConfig(mixing_subtype: Literal['mixup'] = 'mixup',
modality_dropout_rate: float = 0.0, normalization:
Literal['element', 'channel'] | None = 'channel',
adaptive_normalization_max_samples: int | None =
None)

Parameters
• mixing_subtype – Which type of mixing to use on the image data given that
mixing_alpha is set >0.0 in the global configuration.

• modality_dropout_rate – Dropout rate to apply to the modality, e.g. 0.2 means that 20%
of the time, this modality will be dropped out during training.

• normalization – Which type of normalization to apply to the array data. If element, will
normalize each element in the array independently. If channel, will normalize each chan-
nel in the array independently. For ‘channel’, assumes PyTorch format where the channel
dimension is the first dimension.

• adaptive_normalization_max_samples – If using adaptive normalization (channel / el-
ement), how many samples to use to compute the normalization parameters. If None, will
use all samples.

Input Model Configurations

These configurations are used to specify the input feature extractor architecture, as well as paramters that can be common
between different feature extractors. For a given feature extractor (specified with the model_type field), there are there
are various configurations available through the model_init_config field. The documentation below contains more
details about the different configurations available for each feature extractor.

class eir.models.input.omics.omics_models.OmicsModelConfig(model_type: Literal['cnn', 'linear',
'lcl-simple', 'genome-local-net'],
model_init_config: CNNModelConfig |
LinearModelConfig |
SimpleLCLModelConfig |
LCLModelConfig |
IdentityModelConfig)

Parameters
• model_type – Which type of image model to use.

• model_init_config – Configuration used to initialise model.

class eir.models.input.tabular.tabular.TabularModelConfig(model_init_config:
SimpleTabularModelConfig,
model_type: Literal['tabular'] =
'tabular')

Parameters
• model_type – Which type of image model to use.

• model_init_config – Configuration / arguments used to initialise model.

2.6. API 187

EIR

class eir.models.input.sequence.transformer_models.SequenceModelConfig(model_init_config: Ba-
sicTransformerFeature-
ExtractorModelConfig |
Dict, model_type:
Literal['sequence-
default'] | str =
'sequence-default',
embedding_dim: int =
64, position:
Literal['encode',
'embed'] = 'encode',
position_dropout: float
= 0.1, window_size: int
= 0, pool: Literal['avg']
| Literal['max'] | None
= None,
pretrained_model: bool
= False,
freeze_pretrained_model:
bool = False)

Parameters
• model_init_config – Configuration / arguments used to initialise model.

• model_type – Which type of image model to use.

• embedding_dim – Which dimension to use for the embeddings. If None, will automatically
set this value based on the number of tokens and attention heads.

• position – Whether to encode the token position or use learnable position embeddings.

• position_dropout – Dropout for the positional encoding / embedding.

• window_size – If set to more than 0, will apply a sliding window of feature extraction over
the input, meaning the model (e.g. transformer) will only see a part of the input at a time.
Can be Useful to avoid the O(n2) complexity of transformers, as it becomes O(window_size2

* n_windows) instead.

• pool – Whether and how to pool (max / avg) the final feature maps before being passed to the
final fusion module / predictor. Meaning we pool over the sequence (i.e. time) dimension, so
the resulting dimensions is embedding_dim instead of sequence_length * embedding_dim.
If using windowed / conv transformers, this becomes embedding_dim * number_of_chunks.

• pretrained_model – Specify whether the model type is assumed to be pretrained and from
the Pytorch Image Models repository.

• freeze_pretrained_model – Whether to freeze the pretrained model weights.

See Sequence Models for more details about available external sequence models.

class eir.models.input.image.image_models.ImageModelConfig(model_type: Literal['cnn'] | str,
model_init_config: CNNModelConfig |
Dict[str, Any], num_output_features:
int = 256, pretrained_model: bool =
False, freeze_pretrained_model: bool =
False)

Parameters

188 Chapter 2. Documentation

EIR

• model_type – Which type of image model to use.

• model_init_config – Configuration / arguments used to initialise model.

• num_output_features – Number of output final output features from image feature ex-
tractor, which get passed to fusion module.

• pretrained_model – Specify whether the model type is assumed to be pretrained and from
the Pytorch Image Models repository.

• freeze_pretrained_model – Whether to freeze the pretrained model weights.

See Image Models for more details about available external image models.

class eir.models.input.array.array_models.ArrayModelConfig(model_type: Literal['cnn', 'lcl'],
model_init_config: CNNModelConfig |
LCLModelConfig |
ArrayTransformerConfig,
pre_normalization:
Literal['instancenorm', 'layernorm'] |
None = None)

Parameters
• model_type – Which type of image model to use.

• model_init_config – Configuration used to initialise model.

Interpretation Configurations

Parameters to have basic control over how interpretation is done. Currently only supported for sequence and image
data.

class eir.setup.schemas.BasicInterpretationConfig(interpretation_sampling_strategy: Literal['first_n',
'random_sample'] = 'first_n',
num_samples_to_interpret: int = 10,
manual_samples_to_interpret: Sequence[str] |
None = None)

Parameters
• interpretation_sampling_strategy – How to sample sequences for attribution analy-

sis. first_n always grabs the same first n values from the beginning of the dataset to interpret,
while random_sample will sample uniformly from the whole dataset without replacement.

• num_samples_to_interpret – How many samples to interpret.

• manual_samples_to_interpret – IDs of samples to always interpret, irrespective of in-
terpretation_sampling_strategy and num_samples_to_interpret. A caveat here is that they
must be present in the dataset that is being interpreted (e.g. validation / test dataset), mean-
ing that adding IDs here that happen to be in the training dataset will not work.

2.6. API 189

EIR

Feature Extractor Configurations

The documentation below details what the parameters passed to the respective models (trough the model_init_config
field in the --input_configs .yaml files).

Omics Feature Extractors

class eir.models.input.array.models_cnn.CNNModelConfig(layers: None | List[int] = None,
num_output_features: int = 256,
channel_exp_base: int = 2,
first_channel_expansion: int = 1,
kernel_width: int = 12,
first_kernel_expansion_width: int = 1,
down_stride_width: int = 4,
first_stride_expansion_width: int = 1,
dilation_factor_width: int = 1,
kernel_height: int = 4,
first_kernel_expansion_height: int = 1,
down_stride_height: int = 1,
first_stride_expansion_height: int = 1,
dilation_factor_height: int = 1, cutoff: int =
32, rb_do: float = 0.0, stochastic_depth_p:
float = 0.0, attention_inclusion_cutoff: int =
0, l1: float = 0.0)

Parameters
• layers – A list that controls the number of layers and channels in the model. Each element in

the list represents a layer group with a specified number of layers and channels. Specifically,

– The first element in the list refers to the number of layers with the number of channels
exactly as specified by the channel_exp_base parameter.

– The subsequent elements in the list correspond to an increased number of channels, dou-
bling with each step. For instance, if channel_exp_base=3 (i.e., 2**3=8 channels), and
the layers list is [5, 3, 2], the model would be constructed as follows,

∗ First case: 5 layers with 8 channels

∗ Second case: 3 layers with 16 channels (doubling from the previous case)

∗ Third case: 2 layers with 32 channels (doubling from the previous case)

– The model currently supports a maximum of 4 elements in the list.

– If set to None, the model will automatically set up the number of layer groups until a certain
width and height (stride * 8 for both) are met. In this automatic setup, channels will
be increased as the input gets propagated through the network, while the width/height get
reduced due to stride.

Future work includes adding a parameter to control the target width and height.

• num_output_features – Output dimension of the last FC layer in the network which ac-
cepts the outputs from the convolutional layer.

• channel_exp_base – Which power of 2 to use in order to set the number of channels in the
network. For example, setting channel_exp_base=3 means that 2**3=8 channels will be
used.

190 Chapter 2. Documentation

EIR

• first_channel_expansion – Factor to extend the first layer channels.

• kernel_width – Base kernel width of the convolutions.

• first_kernel_expansion_width – Factor to extend the first kernel’s width.

• down_stride_width – Down stride of the convolutional layers along the width.

• first_stride_expansion_width – Factor to extend the first layer stride along the width.

• dilation_factor_width – Base dilation factor of the convolutions along the width in the
network.

• kernel_height – Base kernel height of the convolutions.

• first_kernel_expansion_height – Factor to extend the first kernel’s height.

• down_stride_height – Down stride of the convolutional layers along the height.

• first_stride_expansion_height – Factor to extend the first layer stride along the
height.

• dilation_factor_height – Base dilation factor of the convolutions along the height in
the network.

• cutoff – If the resulting dimension of width * height of adding a successive block is less
than this value, will stop adding residual blocks to the model in the automated case (i.e., if
the layers argument is not specified).

• rb_do – Dropout in the convolutional residual blocks.

• stochastic_depth_p – Probability of dropping input.

• attention_inclusion_cutoff – If the dimension of width * height is less than this value,
attention will be included in the model across channels and width * height as embedding
dimension after that point (with the channels representing the length of the sequence).

• l1 – L1 regularization to apply to the first layer.

class eir.models.input.array.models_identity.IdentityModelConfig(flatten: bool = True,
flatten_shape: Literal['c',
'fortran'] = 'c')

Parameters
• flatten – Whether to flatten the input.

• flatten_shape – What column-row order to flatten the input in.

class eir.models.input.array.models_locally_connected.SimpleLCLModelConfig(fc_repr_dim: int =
12,
num_lcl_chunks:
int = 64, l1: float
= 0.0)

Parameters
• fc_repr_dim – Controls the number of output sets in the first and only split layer. Analogous

to channels in CNNs.

• num_lcl_chunks – Controls the number of splits applied to the input. E.g. with a input with
of 800, using num_lcl_chunks=100 will result in a kernel width of 8, meaning 8 elements
in the flattened input. If using a SNP inputs with a one-hot encoding of 4 possible values,
this will result in 8/2 = 2 SNPs per locally connected area.

2.6. API 191

EIR

• l1 – L1 regularization applied to the first and only locally connected layer.

class eir.models.input.array.models_locally_connected.LCLModelConfig(patch_size: tuple[int, int,
int] | None = None, layers:
None | List[int] = None,
kernel_width: int |
Literal['patch'] = 16,
first_kernel_expansion:
int = -2,
channel_exp_base: int =
2,
first_channel_expansion:
int = 1, num_lcl_chunks:
None | int = None, rb_do:
float = 0.1,
stochastic_depth_p: float
= 0.0, l1: float = 0.0,
cutoff: int | Literal['auto']
= 1024, direction:
Literal['down', 'up'] =
'down', atten-
tion_inclusion_cutoff: int |
None = None)

Note that when using the automatic network setup, kernel widths will get expanded to ensure that the feature
representations become smaller as they are propagated through the network.

Parameters
• patch_size – Controls the size of the patches used in the first layer. If set to None, the input

is flattened according to the torch flatten function. Note that when using this parameter,
we generally want the kernel width to be set to the multiplication of the patch size. Order
follows PyTorch convention, i.e., [channels, height, width].

• layers – Controls the number of layers in the model. If set to None, the model will auto-
matically set up the number of layers according to the cutoff parameter value.

• kernel_width – With of the locally connected kernels. Note that in the context of genomic
inputs this refers to the flattened input, meaning that if we have a one-hot encoding of 4
values (e.g. SNPs), 12 refers to 12/4 = 3 SNPs per locally connected window. Can be set to
None if the num_lcl_chunks parameter is set, which means that the kernel width will be
set automatically according to

• first_kernel_expansion – Factor to extend the first kernel. This value can both
be positive or negative. For example in the case of kernel_width=12, setting
first_kernel_expansion=2 means that the first kernel will have a width of 24, whereas
other kernels will have a width of 12. When using a negative value, divides the first kernel
by the value instead of multiplying.

• channel_exp_base – Which power of 2 to use in order to set the number of channels/weight
sets in the network. For example, setting channel_exp_base=3 means that 2**3=8 weight
sets will be used.

• first_channel_expansion – Whether to expand / shrink the number of channels in
the first layer as compared to other layers in the network. Works analogously to the
first_kernel_expansion parameter.

• num_lcl_chunks – Controls the number of splits applied to the input. E.g. with a input
width of 800, using num_lcl_chunks=100 will result in a kernel width of 8, meaning 8

192 Chapter 2. Documentation

EIR

elements in the flattened input. If using a SNP inputs with a one-hot encoding of 4 possible
values, this will result in 8/2 = 2 SNPs per locally connected area.

• rb_do – Dropout in the residual blocks.

• stochastic_depth_p – Probability of dropping input.

• l1 – L1 regularization applied to the first layer in the network.

• cutoff – Feature dimension cutoff where the automatic network setup stops adding layers.
The ‘auto’ option is only supported when using the model for array outputs, and will set the
cutoff to roughly the number of output features.

• direction – Whether to use a “down” or “up” network. “Down” means that the feature
representation will get smaller as it is propagated through the network, whereas “up” means
that the feature representation will get larger.

• attention_inclusion_cutoff – Cutoff to start including attention blocks in the network.
If set to None, no attention blocks will be included. The cutoff here refers to the “length”
dimension of the input after reshaping according to the output_feature_sets in the preceding
layer. For example, if we 1024 output features, and we have 4 output feature sets, the length
dimension will be 1024/4 = 256. With an attention cutoff >= 256, the attention block will be
included.

class eir.models.input.array.models_linear.LinearModelConfig(fc_repr_dim: int = 32, l1: float =
0.0)

Parameters
• fc_repr_dim – Number of output nodes in the first and only hidden layer.

• l1 – L1 regularisation to apply to the first layer.

Tabular Feature Extractors

class eir.models.input.tabular.tabular.SimpleTabularModelConfig(l1: float = 0.0, fc_layer: bool =
False)

Parameters
• l1 – L1 regularization applied to the embeddings for categorical tabular inputs.

• fc_layer – Whether to add a single fully-connected layer to the model, alternative to looking
up and passing the inputs through directly.

Sequence and Binary Feature Extractors

Built-in Sequence Feature Extractors

2.6. API 193

EIR

class eir.models.input.sequence.transformer_models.BasicTransformerFeatureExtractorModelConfig(num_heads:
int
=
8,
num_layers:
int
=
2,
dim_feedforward:
int
|
Lit-
eral['auto']
=
'auto',
dropout:
float
=
0.1)

Parameters
• num_heads – The number of heads in the multi-head attention models

• num_layers – The number of encoder blocks in the transformer model.

• dim_feedforward – The dimension of the feedforward layers in the transformer model.

• dropout – Dropout value to use in the encoder layers.

External Sequence Feature Extractors
Please refer to Sequence Models for more details about the external image models.

Image Feature Extractors

Built-in Image Feature Extractors
class eir.models.input.array.models_cnn.CNNModelConfig(layers: None | List[int] = None,

num_output_features: int = 256,
channel_exp_base: int = 2,
first_channel_expansion: int = 1,
kernel_width: int = 12,
first_kernel_expansion_width: int = 1,
down_stride_width: int = 4,
first_stride_expansion_width: int = 1,
dilation_factor_width: int = 1,
kernel_height: int = 4,
first_kernel_expansion_height: int = 1,
down_stride_height: int = 1,
first_stride_expansion_height: int = 1,
dilation_factor_height: int = 1, cutoff: int =
32, rb_do: float = 0.0, stochastic_depth_p:
float = 0.0, attention_inclusion_cutoff: int =
0, l1: float = 0.0)

Parameters

194 Chapter 2. Documentation

EIR

• layers – A list that controls the number of layers and channels in the model. Each element in
the list represents a layer group with a specified number of layers and channels. Specifically,

– The first element in the list refers to the number of layers with the number of channels
exactly as specified by the channel_exp_base parameter.

– The subsequent elements in the list correspond to an increased number of channels, dou-
bling with each step. For instance, if channel_exp_base=3 (i.e., 2**3=8 channels), and
the layers list is [5, 3, 2], the model would be constructed as follows,

∗ First case: 5 layers with 8 channels

∗ Second case: 3 layers with 16 channels (doubling from the previous case)

∗ Third case: 2 layers with 32 channels (doubling from the previous case)

– The model currently supports a maximum of 4 elements in the list.

– If set to None, the model will automatically set up the number of layer groups until a certain
width and height (stride * 8 for both) are met. In this automatic setup, channels will
be increased as the input gets propagated through the network, while the width/height get
reduced due to stride.

Future work includes adding a parameter to control the target width and height.

• num_output_features – Output dimension of the last FC layer in the network which ac-
cepts the outputs from the convolutional layer.

• channel_exp_base – Which power of 2 to use in order to set the number of channels in the
network. For example, setting channel_exp_base=3 means that 2**3=8 channels will be
used.

• first_channel_expansion – Factor to extend the first layer channels.

• kernel_width – Base kernel width of the convolutions.

• first_kernel_expansion_width – Factor to extend the first kernel’s width.

• down_stride_width – Down stride of the convolutional layers along the width.

• first_stride_expansion_width – Factor to extend the first layer stride along the width.

• dilation_factor_width – Base dilation factor of the convolutions along the width in the
network.

• kernel_height – Base kernel height of the convolutions.

• first_kernel_expansion_height – Factor to extend the first kernel’s height.

• down_stride_height – Down stride of the convolutional layers along the height.

• first_stride_expansion_height – Factor to extend the first layer stride along the
height.

• dilation_factor_height – Base dilation factor of the convolutions along the height in
the network.

• cutoff – If the resulting dimension of width * height of adding a successive block is less
than this value, will stop adding residual blocks to the model in the automated case (i.e., if
the layers argument is not specified).

• rb_do – Dropout in the convolutional residual blocks.

• stochastic_depth_p – Probability of dropping input.

2.6. API 195

EIR

• attention_inclusion_cutoff – If the dimension of width * height is less than this value,
attention will be included in the model across channels and width * height as embedding
dimension after that point (with the channels representing the length of the sequence).

• l1 – L1 regularization to apply to the first layer.

External Image Feature Extractors
Please refer to Image Models for more details about the external image models.

Array Feature Extractors

class eir.models.input.array.models_cnn.CNNModelConfig(layers: None | List[int] = None,
num_output_features: int = 256,
channel_exp_base: int = 2,
first_channel_expansion: int = 1,
kernel_width: int = 12,
first_kernel_expansion_width: int = 1,
down_stride_width: int = 4,
first_stride_expansion_width: int = 1,
dilation_factor_width: int = 1,
kernel_height: int = 4,
first_kernel_expansion_height: int = 1,
down_stride_height: int = 1,
first_stride_expansion_height: int = 1,
dilation_factor_height: int = 1, cutoff: int =
32, rb_do: float = 0.0, stochastic_depth_p:
float = 0.0, attention_inclusion_cutoff: int =
0, l1: float = 0.0)

Parameters
• layers – A list that controls the number of layers and channels in the model. Each element in

the list represents a layer group with a specified number of layers and channels. Specifically,

– The first element in the list refers to the number of layers with the number of channels
exactly as specified by the channel_exp_base parameter.

– The subsequent elements in the list correspond to an increased number of channels, dou-
bling with each step. For instance, if channel_exp_base=3 (i.e., 2**3=8 channels), and
the layers list is [5, 3, 2], the model would be constructed as follows,

∗ First case: 5 layers with 8 channels

∗ Second case: 3 layers with 16 channels (doubling from the previous case)

∗ Third case: 2 layers with 32 channels (doubling from the previous case)

– The model currently supports a maximum of 4 elements in the list.

– If set to None, the model will automatically set up the number of layer groups until a certain
width and height (stride * 8 for both) are met. In this automatic setup, channels will
be increased as the input gets propagated through the network, while the width/height get
reduced due to stride.

Future work includes adding a parameter to control the target width and height.

• num_output_features – Output dimension of the last FC layer in the network which ac-
cepts the outputs from the convolutional layer.

196 Chapter 2. Documentation

EIR

• channel_exp_base – Which power of 2 to use in order to set the number of channels in the
network. For example, setting channel_exp_base=3 means that 2**3=8 channels will be
used.

• first_channel_expansion – Factor to extend the first layer channels.

• kernel_width – Base kernel width of the convolutions.

• first_kernel_expansion_width – Factor to extend the first kernel’s width.

• down_stride_width – Down stride of the convolutional layers along the width.

• first_stride_expansion_width – Factor to extend the first layer stride along the width.

• dilation_factor_width – Base dilation factor of the convolutions along the width in the
network.

• kernel_height – Base kernel height of the convolutions.

• first_kernel_expansion_height – Factor to extend the first kernel’s height.

• down_stride_height – Down stride of the convolutional layers along the height.

• first_stride_expansion_height – Factor to extend the first layer stride along the
height.

• dilation_factor_height – Base dilation factor of the convolutions along the height in
the network.

• cutoff – If the resulting dimension of width * height of adding a successive block is less
than this value, will stop adding residual blocks to the model in the automated case (i.e., if
the layers argument is not specified).

• rb_do – Dropout in the convolutional residual blocks.

• stochastic_depth_p – Probability of dropping input.

• attention_inclusion_cutoff – If the dimension of width * height is less than this value,
attention will be included in the model across channels and width * height as embedding
dimension after that point (with the channels representing the length of the sequence).

• l1 – L1 regularization to apply to the first layer.

2.6. API 197

EIR

class eir.models.input.array.models_locally_connected.LCLModelConfig(patch_size: tuple[int, int,
int] | None = None, layers:
None | List[int] = None,
kernel_width: int |
Literal['patch'] = 16,
first_kernel_expansion:
int = -2,
channel_exp_base: int =
2,
first_channel_expansion:
int = 1, num_lcl_chunks:
None | int = None, rb_do:
float = 0.1,
stochastic_depth_p: float
= 0.0, l1: float = 0.0,
cutoff: int | Literal['auto']
= 1024, direction:
Literal['down', 'up'] =
'down', atten-
tion_inclusion_cutoff: int |
None = None)

Note that when using the automatic network setup, kernel widths will get expanded to ensure that the feature
representations become smaller as they are propagated through the network.

Parameters
• patch_size – Controls the size of the patches used in the first layer. If set to None, the input

is flattened according to the torch flatten function. Note that when using this parameter,
we generally want the kernel width to be set to the multiplication of the patch size. Order
follows PyTorch convention, i.e., [channels, height, width].

• layers – Controls the number of layers in the model. If set to None, the model will auto-
matically set up the number of layers according to the cutoff parameter value.

• kernel_width – With of the locally connected kernels. Note that in the context of genomic
inputs this refers to the flattened input, meaning that if we have a one-hot encoding of 4
values (e.g. SNPs), 12 refers to 12/4 = 3 SNPs per locally connected window. Can be set to
None if the num_lcl_chunks parameter is set, which means that the kernel width will be
set automatically according to

• first_kernel_expansion – Factor to extend the first kernel. This value can both
be positive or negative. For example in the case of kernel_width=12, setting
first_kernel_expansion=2 means that the first kernel will have a width of 24, whereas
other kernels will have a width of 12. When using a negative value, divides the first kernel
by the value instead of multiplying.

• channel_exp_base – Which power of 2 to use in order to set the number of channels/weight
sets in the network. For example, setting channel_exp_base=3 means that 2**3=8 weight
sets will be used.

• first_channel_expansion – Whether to expand / shrink the number of channels in
the first layer as compared to other layers in the network. Works analogously to the
first_kernel_expansion parameter.

• num_lcl_chunks – Controls the number of splits applied to the input. E.g. with a input
width of 800, using num_lcl_chunks=100 will result in a kernel width of 8, meaning 8
elements in the flattened input. If using a SNP inputs with a one-hot encoding of 4 possible
values, this will result in 8/2 = 2 SNPs per locally connected area.

198 Chapter 2. Documentation

EIR

• rb_do – Dropout in the residual blocks.

• stochastic_depth_p – Probability of dropping input.

• l1 – L1 regularization applied to the first layer in the network.

• cutoff – Feature dimension cutoff where the automatic network setup stops adding layers.
The ‘auto’ option is only supported when using the model for array outputs, and will set the
cutoff to roughly the number of output features.

• direction – Whether to use a “down” or “up” network. “Down” means that the feature
representation will get smaller as it is propagated through the network, whereas “up” means
that the feature representation will get larger.

• attention_inclusion_cutoff – Cutoff to start including attention blocks in the network.
If set to None, no attention blocks will be included. The cutoff here refers to the “length”
dimension of the input after reshaping according to the output_feature_sets in the preceding
layer. For example, if we 1024 output features, and we have 4 output feature sets, the length
dimension will be 1024/4 = 256. With an attention cutoff >= 256, the attention block will be
included.

class eir.models.input.array.models_transformers.ArrayTransformerConfig(patch_size: tuple[int,
...], embedding_dim:
int, num_heads: int =
8, num_layers: int =
2, dim_feedforward:
int | Literal['auto'] =
'auto', dropout: float
= 0.1, position:
Literal['encode',
'embed'] = 'encode',
position_dropout:
float = 0.1)

Parameters
• patch_size – Controls the size of the patches used in the first layer. If set to None, the input

is flattened according to the torch flatten function. Note that when using this parameter,
we generally want the kernel width to be set to the multiplication of the patch size. Order
follows PyTorch convention, i.e., [channels, height, width].

• embedding_dim – The embedding dimension each patch is projected to. This is also the
dimension of the transformer encoder layers.

• num_heads – The number of heads in the multi-head attention layers.

• num_layers – The number of transformer encoder layers.

• dim_feedforward – The dimension of the feedforward layers in the transformer model.

• dropout – The dropout rate to use in the transformer encoder layers.

• position – Whether to encode the token position or use learnable position embeddings.

• position_dropout – The dropout rate to use in the position encoding/embedding.

2.6. API 199

EIR

Fusion Configurations

class eir.setup.schemas.FusionConfig(model_type: Literal['mlp-residual', 'identity', 'mgmoe',
'pass-through'], model_config: ResidualMLPConfig | IdentityConfig
| MGMoEModelConfig)

Parameters
• model_type – Which type of fusion model to use.

• model_config – Fusion model configuration.

Fusion Module Configuration

class eir.models.fusion.fusion_default.ResidualMLPConfig(layers: ~typing.List[int] = <factory>,
fc_task_dim: int = 256, rb_do: float =
0.1, fc_do: float = 0.1,
stochastic_depth_p: float = 0.1)

Parameters
• layers – Number of residual MLP layers to use in for each output predictor after fusing.

• fc_task_dim – Number of hidden nodes in each MLP residual block.

• rb_do – Dropout in each MLP residual block.

• fc_do – Dropout before final layer.

• stochastic_depth_p – Probability of dropping input.

class eir.models.fusion.fusion_mgmoe.MGMoEModelConfig(layers: ~typing.Sequence[int] = <factory>,
fc_task_dim: int = 64, mg_num_experts: int
= 8, rb_do: float = 0.0, fc_do: float = 0.0,
stochastic_depth_p: float = 0.0)

Parameters
• layers – A sequence of two int values controlling the number of residual MLP blocks in

the network. The first item (i.e. layers[0]) refers to the number of blocks in the expert
branches. The second item (i.e. layers[1]) refers to the number of blocks in the predictor
branches.

• fc_task_dim – Number of hidden nodes in all residual blocks (both expert and predictor)
of the network.

• mg_num_experts – Number of multi gate experts to use.

• rb_do – Dropout in all MLP residual blocks (both expert and predictor).

• fc_do – Dropout before the last FC layer.

• stochastic_depth_p – Probability of dropping input.

class eir.models.fusion.fusion_identity.IdentityConfig

200 Chapter 2. Documentation

EIR

Output Configurations

class eir.setup.schemas.OutputConfig(output_info: OutputInfoConfig, output_type_info:
TabularOutputTypeConfig | SequenceOutputTypeConfig |
ArrayOutputTypeConfig, model_config:
TabularOutputModuleConfig | SequenceOutputModuleConfig |
ArrayOutputModuleConfig, sampling_config:
SequenceOutputSamplingConfig | ArrayOutputSamplingConfig |
dict | None = None)

Parameters
• output_info – Information about the output source, name and type.

• output_type_info – Information specific to the output type, e.g. which columns to predict
from a tabular file.

• model_config – Configuration for the chosen model (i.e. output module after fusion) for
this output.

• sampling_config – Configuration for how to sample results from the output module.

Output Info Configuration

class eir.setup.schemas.OutputInfoConfig(output_source: str, output_name: str, output_type:
Literal['tabular', 'sequence', 'array'], output_inner_key: str |
None = None)

Parameters
• output_source – Where on the filesystem to locate the output (if applicable)

• output_name – Name to identify the output.

• output_type – Type of the output.

Output Type Configuration

class eir.setup.schemas.TabularOutputTypeConfig(target_cat_columns: ~typing.Sequence[str] =
<factory>, target_con_columns:
~typing.Sequence[str] = <factory>,
label_parsing_chunk_size: None | int = None,
cat_label_smoothing: float = 0.0, cat_loss_name:
~typing.Literal['CrossEntropyLoss'] =
'CrossEntropyLoss', con_loss_name:
~typing.Literal['MSELoss', 'L1Loss', 'SmoothL1Loss',
'PoissonNLLLoss', 'HuberLoss'] = 'MSELoss',
uncertainty_weighted_mt_loss: bool = True)

Parameters
• target_cat_columns – Which columns from label_file to use as categorical targets.

• target_con_columns – Which columns from label_file to use as continuous targets.

• label_parsing_chunk_size – Number of rows to process at time when loading in the
input_source. Useful when RAM is limited.

2.6. API 201

EIR

• cat_label_smoothing – Label smoothing to apply to categorical targets.

• uncertainty_weighted_mt_loss – Whether to use uncertainty weighted loss for multi-
task / multilabel learning.

class eir.setup.schema_modules.output_schemas_sequence.SequenceOutputTypeConfig(vocab_file:
None | str =
None,
max_length:
al_max_sequence_length
= 'average',
sam-
pling_strategy_if_longer:
Lit-
eral['from_start',
'uniform'] =
'uniform',
min_freq:
int = 10,
split_on: str
| None = ' ',
tokenizer:
al_tokenizer_choices
= None,
tok-
enizer_language:
str | None =
None, adap-
tive_tokenizer_max_vocab_size:
int | None =
None, se-
quence_operation:
Lit-
eral['autoregressive',
'mlm'] =
'autoregres-
sive')

Parameters
• vocab_file – An optional text file containing pre-defined vocabulary to use for the train-

ing. If this is not passed in, the framework will automatically build the vocabulary from the
training data. Passing in a vocabulary file is therefore useful if (a) you want to manually
specify / limit the vocabulary used and/or (b) you want to save time by pre-computing the
vocabulary.

• max_length – Maximum length to truncate/pad sequences to. This can be an integer or
the values ‘max’ or ‘average’. The ‘max’ keyword will use the maximum sequence length
found in the training data, while the ‘average’ will use the average length across all training
samples.

• sampling_strategy_if_longer – Controls how sequences are truncated if they are
longer than the specified max_length parameter. Using ‘from_start’ will always truncate
from the beginning of the sequence, ensuring the the samples will always be the same during
training. Setting this parameter to uniform will uniformly sample a slice of a given sample
sequence during training. Note that for consistency, the validation/test set samples always
use the from_start setting when truncating.

202 Chapter 2. Documentation

EIR

• min_freq – Minimum number of times a token must appear in the total training data to
be included in the vocabulary. Note that this setting will not do anything if passing in
vocab_file.

• split_on – Which token to split the sequence on to generate separate tokens for the vocab-
ulary.

• tokenizer – Which tokenizer to use. Relevant if modelling on language, but not as much
when doing it on other arbitrary sequences.

• tokenizer_language – Which language rules the tokenizer should apply when tokenizing
the raw data.

• adaptive_tokenizer_max_vocab_size – If using an adaptive tokenizer (“bpe”), this pa-
rameter controls the maximum size of the vocabulary.

• sequence_operation – Which operation to perform on the sequence. Currently only
autoregressive is supported, which means that the model will be trained to predict the
next token in the sequence given the previous tokens.

class eir.setup.schema_modules.output_schemas_array.ArrayOutputTypeConfig(normalization:
Literal['element',
'channel'] | None =
'channel', adap-
tive_normalization_max_samples:
int | None = None)

Parameters
• normalization – Which type of normalization to apply to the array data. If element, will

normalize each element in the array independently. If channel, will normalize each chan-
nel in the array independently. For ‘channel’, assumes PyTorch format where the channel
dimension is the first dimension.

• adaptive_normalization_max_samples – If using adaptive normalization (channel / el-
ement), how many samples to use to compute the normalization parameters. If None, will
use all samples.

Output Module Configuration

Tabular Output Modules
class eir.models.output.tabular.tabular_output_modules.TabularOutputModuleConfig(model_init_config:

Resid-
ualMLPOut-
putMod-
uleConfig |
LinearOut-
putMod-
uleConfig,
model_type:
Lit-
eral['mlp_residual',
'linear'] =
'mlp_residual')

Parameters

2.6. API 203

EIR

• model_init_config – Configuration / arguments used to initialise model.

• model_type – Which type of image model to use.

The documentation below details what the parameters passed to the respective output output heads of the tabular output
model. (trough the model_init_config field in the --output_configs .yaml files).

class eir.models.output.tabular.mlp_residual.ResidualMLPOutputModuleConfig(layers:
~typing.List[int] =
<factory>,
fc_task_dim: int =
256, rb_do: float
= 0.1, fc_do: float
= 0.1, stochas-
tic_depth_p: float
= 0.1,
final_layer_type:
~typ-
ing.Literal['linear']
| ~typ-
ing.Literal['mlp_residual']
= 'linear')

Parameters
• layers – Number of residual MLP residual blocks to use in the output module.

• fc_task_dim – Number of hidden nodes in each MLP residual block.

• rb_do – Dropout in each MLP residual block.

• fc_do – Dropout before final layer.

• stochastic_depth_p – Stochastic depth probability (probability of dropping input) for
each residual block.

• final_layer_type – Which type of final layer to use to construct tabular output prediction.

class eir.models.output.tabular.linear.LinearOutputModuleConfig

Sequence Output Modules

204 Chapter 2. Documentation

EIR

class eir.models.output.sequence.sequence_output_modules.SequenceOutputModuleConfig(model_init_config:
Trans-
form-
erSe-
quence-
Out-
put-
Mod-
ule-
Con-
fig,
model_type:
Lit-
eral['sequence']
= 'se-
quence',
em-
bed-
ding_dim:
int =
64, po-
sition:
Lit-
eral['encode',
'em-
bed']
= 'en-
code',
posi-
tion_dropout:
float =
0.1,
projec-
tion_layer_type:
Lit-
eral['auto',
'lcl',
'lcl_residual',
'lin-
ear'] =
'auto')

Parameters
• model_init_config – Configuration / arguments used to initialise model.

• model_type – Which type of image model to use.

• embedding_dim – Which dimension to use for the embeddings. If None, will automatically
set this value based on the number of tokens and attention heads.

• position – Whether to encode the token position or use learnable position embeddings.

• position_dropout – Dropout for the positional encoding / embedding.

Array Output Modules

2.6. API 205

EIR

class eir.models.output.array.array_output_modules.ArrayOutputModuleConfig(model_type:
Literal['lcl', 'cnn'],
model_init_config:
LCLOutputModel-
Config,
pre_normalization:
Lit-
eral['instancenorm',
'layernorm'] |
None = None)

Parameters
• model_type – Which type of image model to use.

• model_init_config – Configuration used to initialise model.

Output Sampling Configuration

class eir.setup.schema_modules.output_schemas_sequence.SequenceOutputSamplingConfig(manual_inputs:
Se-
quence[Dict[str,
str]] =
(),
n_eval_inputs:
int =
10,
gener-
ated_sequence_length:
int =
64,
top_k:
int =
20,
top_p:
float =
0.9)

Parameters
• manual_inputs – Manually specified inputs to use for sequence generation. This is useful

if you want to generate sequences based on a specific input. Depending on the input type,
different formats are expected:

– sequence: A string written directly in the .yaml file.

– omics: A file path to NumPy array of shape (4, n_SNPs) on disk.

– image: An image file path on disk.

– tabular: A mapping of (column key: value) written directly in the .yaml file.

– array: A file path to NumPy array on disk.

– bytes: A file path to a file on disk.

• n_eval_inputs – The number of inputs automatically sampled from the validation set for
sequence generation.

206 Chapter 2. Documentation

EIR

• generated_sequence_length – The length of the output sequences that are generated.

• top_k – The number of top candidates to consider when sampling the next token in an output
sequence. By default, the model considers the top 20 candidates

• top_p – The cumulative probability of the top candidates to consider when sampling the
next token in an output sequence. For example, if top_p is 0.9, the model will stop sampling
candidates once the cumulative probability of the most likely candidates reaches 0.9.

class eir.setup.schema_modules.output_schemas_array.ArrayOutputSamplingConfig(manual_inputs:
Se-
quence[dict[str,
str]] = (),
n_eval_inputs:
int = 10)

Parameters
• manual_inputs – Manually specified inputs to use for sequence generation. This is useful

if you want to generate sequences based on a specific input. Depending on the input type,
different formats are expected:

– sequence: A string written directly in the .yaml file.

– omics: A file path to NumPy array of shape (4, n_SNPs) on disk.

– image: An image file path on disk.

– tabular: A mapping of (column key: value) written directly in the .yaml file.

– array: A file path to NumPy array on disk.

– bytes: A file path to a file on disk.

• n_eval_inputs – The number of inputs automatically sampled from the validation set for
sequence generation.

2.6.2 Image Models

This page contains the list of external image models that can be used with EIR, coming from the great timm library.

There are 3 ways to use these models:

• Configure and train specific architectures (e.g. ResNet with chosen number of layers) from scratch.

• Train a specific architecture (e.g. resnet18) from scratch.

• Use a pre-trained model (e.g. resnet18) and fine-tune it.

Please refer to this page for more detailed information about configurable architectures, and this page for a list of
pre-defined architectures, with the option of using pre-trained weights.

2.6. API 207

https://huggingface.co/docs/timm
https://huggingface.co/docs/timm/models
https://huggingface.co/timm

EIR

Configurable Models

The following models can be configured and trained from scratch.

The model type is specified in the model_type field of the configuration, while the model specific configuration is
specified in the model_init_config field.

For example, the ResNet architecture includes the layers and block parameters, and can be configured as follows:

Listing 121: input_configurable_image_model.yaml

input_info:
input_source: eir_tutorials/a_using_eir/05_image_tutorial/data/hot_dog_not_hot_dog/

→˓food_images
input_name: hot_dog
input_type: image

input_type_info:
mixing_subtype: "cutmix"
size:
- 64

model_config:
model_type: "ResNet"
model_init_config:
layers: [1, 1, 1, 1]
block: "BasicBlock"

interpretation_config:
num_samples_to_interpret: 30

class timm.models.beit.Beit(img_size: int | ~typing.Tuple[int, int] = 224, patch_size: int | ~typing.Tuple[int,
int] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg',
embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool =
True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False, scale_mlp: bool =
False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, proj_drop_rate: float
= 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer:
~typing.Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: float |
None = None, use_abs_pos_emb: bool = True, use_rel_pos_bias: bool = False,
use_shared_rel_pos_bias: bool = False, head_init_scale: float = 0.001)

Vision Transformer with support for patch or hybrid CNN input stage

class timm.models.byobnet.ByobNet(cfg: ByoModelCfg, num_classes: int = 1000, in_chans: int = 3,
global_pool: str = 'avg', output_stride: int = 32, img_size: int |
Tuple[int, int] | None = None, drop_rate: float = 0.0, drop_path_rate:
float = 0.0, zero_init_last: bool = True, **kwargs)

‘Bring-your-own-blocks’ Net

A flexible network backbone that allows building model stem + blocks via dataclass cfg definition w/ factory
functions for module instantiation.

Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act).

208 Chapter 2. Documentation

EIR

class timm.models.cait.Cait(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
global_pool='token', embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, pos_drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
block_layers=<class 'timm.models.cait.LayerScaleBlock'>,
block_layers_token=<class 'timm.models.cait.LayerScaleBlockClassAttn'>,
patch_layer=<class 'timm.layers.patch_embed.PatchEmbed'>,
norm_layer=functools.partial(<class
'torch.nn.modules.normalization.LayerNorm'>, eps=1e-06), act_layer=<class
'torch.nn.modules.activation.GELU'>, attn_block=<class
'timm.models.cait.TalkingHeadAttn'>, mlp_block=<class
'timm.layers.mlp.Mlp'>, init_values=0.0001, attn_block_token_only=<class
'timm.models.cait.ClassAttn'>, mlp_block_token_only=<class
'timm.layers.mlp.Mlp'>, depth_token_only=2, mlp_ratio_token_only=4.0)

class timm.models.coat.CoaT(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
embed_dims=(64, 128, 320, 512), serial_depths=(3, 4, 6, 3), parallel_depth=0,
num_heads=8, mlp_ratios=(4, 4, 4, 4), qkv_bias=True, drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
norm_layer=<class 'timm.layers.norm.LayerNorm'>,
return_interm_layers=False, out_features=None, crpe_window=None,
global_pool='token')

CoaT class.

class timm.models.convit.ConVit(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
global_pool='token', embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4.0, qkv_bias=False, drop_rate=0.0, pos_drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
hybrid_backbone=None, norm_layer=<class
'timm.layers.norm.LayerNorm'>, local_up_to_layer=3,
locality_strength=1.0, use_pos_embed=True)

Vision Transformer with support for patch or hybrid CNN input stage

class timm.models.convmixer.ConvMixer(dim, depth, kernel_size=9, patch_size=7, in_chans=3,
num_classes=1000, global_pool='avg', drop_rate=0.0,
act_layer=<class 'torch.nn.modules.activation.GELU'>,
**kwargs)

class timm.models.convnext.ConvNeXt(in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg',
output_stride: int = 32, depths: Tuple[int, ...] = (3, 3, 9, 3), dims:
Tuple[int, ...] = (96, 192, 384, 768), kernel_sizes: int | Tuple[int, ...]
= 7, ls_init_value: float | None = 1e-06, stem_type: str = 'patch',
patch_size: int = 4, head_init_scale: float = 1.0, head_norm_first:
bool = False, head_hidden_size: int | None = None, conv_mlp: bool
= False, conv_bias: bool = True, use_grn: bool = False, act_layer:
str | Callable = 'gelu', norm_layer: str | Callable | None = None,
norm_eps: float | None = None, drop_rate: float = 0.0,
drop_path_rate: float = 0.0)

A PyTorch impl of : A ConvNet for the 2020s - https://arxiv.org/pdf/2201.03545.pdf

2.6. API 209

https://arxiv.org/pdf/2201.03545.pdf

EIR

class timm.models.crossvit.CrossVit(img_size=224, img_scale=(1.0, 1.0), patch_size=(8, 16), in_chans=3,
num_classes=1000, embed_dim=(192, 384), depth=((1, 3, 1), (1, 3,
1), (1, 3, 1)), num_heads=(6, 12), mlp_ratio=(2.0, 2.0, 4.0),
multi_conv=False, crop_scale=False, qkv_bias=True, drop_rate=0.0,
pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0,
drop_path_rate=0.0, norm_layer=functools.partial(<class
'torch.nn.modules.normalization.LayerNorm'>, eps=1e-06),
global_pool='token')

Vision Transformer with support for patch or hybrid CNN input stage

class timm.models.cspnet.CspNet(cfg: CspModelCfg, in_chans=3, num_classes=1000, output_stride=32,
global_pool='avg', drop_rate=0.0, drop_path_rate=0.0,
zero_init_last=True, **kwargs)

Cross Stage Partial base model.

Paper: CSPNet: A New Backbone that can Enhance Learning Capability of CNN - https://arxiv.org/abs/1911.
11929 Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks

NOTE: There are differences in the way I handle the 1x1 ‘expansion’ conv in this impl vs the darknet impl. I did
it this way for simplicity and less special cases.

class timm.models.davit.DaVit(in_chans=3, depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768),
num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4, qkv_bias=True,
norm_layer='layernorm2d', norm_layer_cl='layernorm', norm_eps=1e-05,
attn_types=('spatial', 'channel'), ffn=True, cpe_act=False, drop_rate=0.0,
drop_path_rate=0.0, num_classes=1000, global_pool='avg',
head_norm_first=False)

DaViT
A PyTorch implementation of DaViT: Dual Attention Vision Transformers - https://arxiv.org/abs/2204.
03645 Supports arbitrary input sizes and pyramid feature extraction

Parameters
• in_chans (int) – Number of input image channels. Default: 3

• num_classes (int) – Number of classes for classification head. Default: 1000

• depths (tuple(int)) – Number of blocks in each stage. Default: (1, 1, 3, 1)

• embed_dims (tuple(int)) – Patch embedding dimension. Default: (96, 192, 384, 768)

• num_heads (tuple(int)) – Number of attention heads in different layers. Default: (3, 6,
12, 24)

• window_size (int) – Window size. Default: 7

• mlp_ratio (float) – Ratio of mlp hidden dim to embedding dim. Default: 4

• qkv_bias (bool) – If True, add a learnable bias to query, key, value. Default: True

• drop_path_rate (float) – Stochastic depth rate. Default: 0.1

• norm_layer (nn.Module) – Normalization layer. Default: nn.LayerNorm.

class timm.models.deit.VisionTransformerDistilled(*args, **kwargs)
Vision Transformer w/ Distillation Token and Head

Distillation token & head support for DeiT: Data-efficient Image Transformers

• https://arxiv.org/abs/2012.12877

210 Chapter 2. Documentation

https://arxiv.org/abs/1911.11929
https://arxiv.org/abs/1911.11929
https://github.com/WongKinYiu/CrossStagePartialNetworks
https://arxiv.org/abs/2204.03645
https://arxiv.org/abs/2204.03645
https://arxiv.org/abs/2012.12877

EIR

class timm.models.densenet.DenseNet(growth_rate=32, block_config=(6, 12, 24, 16), num_classes=1000,
in_chans=3, global_pool='avg', bn_size=4, stem_type='',
act_layer='relu', norm_layer='batchnorm2d', aa_layer=None,
drop_rate=0.0, proj_drop_rate=0.0, memory_efficient=False,
aa_stem_only=True)

Densenet-BC model class, based on “Densely Connected Convolutional Networks”

Parameters
• growth_rate (int) - how many filters to add each layer (k in paper)

• block_config (list of 4 ints)

• bn_size (int) – (i.e. bn_size * k features in the bottleneck layer)

• drop_rate (float)

• proj_drop_rate (float)

• num_classes (int)

• memory_efficient (bool) – but slower. Default: False. See “paper”

class timm.models.dla.DLA(levels, channels, output_stride=32, num_classes=1000, in_chans=3,
global_pool='avg', cardinality=1, base_width=64, block=<class
'timm.models.dla.DlaBottle2neck'>, shortcut_root=False, drop_rate=0.0)

class timm.models.dpn.DPN(k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), k_r=96, groups=32,
num_classes=1000, in_chans=3, output_stride=32, global_pool='avg',
small=False, num_init_features=64, b=False, drop_rate=0.0,
norm_layer='batchnorm2d', act_layer='relu', fc_act_layer='elu')

class timm.models.edgenext.EdgeNeXt(in_chans=3, num_classes=1000, global_pool='avg', dims=(24, 48,
88, 168), depths=(3, 3, 9, 3), global_block_counts=(0, 1, 1, 1),
kernel_sizes=(3, 5, 7, 9), heads=(8, 8, 8, 8), d2_scales=(2, 2, 3, 4),
use_pos_emb=(False, True, False, False), ls_init_value=1e-06,
head_init_scale=1.0, expand_ratio=4, downsample_block=False,
conv_bias=True, stem_type='patch', head_norm_first=False,
act_layer=<class 'torch.nn.modules.activation.GELU'>,
drop_path_rate=0.0, drop_rate=0.0)

class timm.models.efficientformer.EfficientFormer(depths, embed_dims=None, in_chans=3,
num_classes=1000, global_pool='avg',
downsamples=None, num_vit=0, mlp_ratios=4,
pool_size=3, layer_scale_init_value=1e-05,
act_layer=<class
'torch.nn.modules.activation.GELU'>,
norm_layer=<class
'torch.nn.modules.batchnorm.BatchNorm2d'>,
norm_layer_cl=<class
'torch.nn.modules.normalization.LayerNorm'>,
drop_rate=0.0, proj_drop_rate=0.0,
drop_path_rate=0.0, **kwargs)

class timm.models.efficientnet.EfficientNet(block_args, num_classes=1000, num_features=1280,
in_chans=3, stem_size=32, fix_stem=False,
output_stride=32, pad_type='', round_chs_fn=<function
round_channels>, act_layer=None, norm_layer=None,
se_layer=None, drop_rate=0.0, drop_path_rate=0.0,
global_pool='avg')

2.6. API 211

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1707.06990.pdf

EIR

A flexible and performant PyTorch implementation of efficient network architectures, including:
• EfficientNet-V2 Small, Medium, Large, XL & B0-B3

• EfficientNet B0-B8, L2

• EfficientNet-EdgeTPU

• EfficientNet-CondConv

• MixNet S, M, L, XL

• MnasNet A1, B1, and small

• MobileNet-V2

• FBNet C

• Single-Path NAS Pixel1

• TinyNet

class timm.models.efficientvit_mit.EfficientVit(in_chans=3, widths=(), depths=(), head_dim=32,
expand_ratio=4, norm_layer=<class
'torch.nn.modules.batchnorm.BatchNorm2d'>,
act_layer=<class
'torch.nn.modules.activation.Hardswish'>,
global_pool='avg', head_widths=(), drop_rate=0.0,
num_classes=1000)

class timm.models.efficientvit_msra.EfficientVitMsra(img_size=224, in_chans=3,
num_classes=1000, embed_dim=(64, 128,
192), key_dim=(16, 16, 16), depth=(1, 2, 3),
num_heads=(4, 4, 4), window_size=(7, 7, 7),
kernels=(5, 5, 5, 5), down_ops=(('', 1),
('subsample', 2), ('subsample', 2)),
global_pool='avg', drop_rate=0.0)

class timm.models.eva.Eva(img_size: int | ~typing.Tuple[int, int] = 224, patch_size: int | ~typing.Tuple[int,
int] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg',
embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool =
True, qkv_fused: bool = True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False,
scale_mlp: bool = False, scale_attn_inner: bool = False, drop_rate: float = 0.0,
pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float =
0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer:
~typing.Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: float |
None = None, class_token: bool = True, use_abs_pos_emb: bool = True,
use_rot_pos_emb: bool = False, use_post_norm: bool = False, dynamic_img_size:
bool = False, dynamic_img_pad: bool = False, ref_feat_shape: int |
~typing.Tuple[int, int] | None = None, head_init_scale: float = 0.001)

Eva Vision Transformer w/ Abs & Rotary Pos Embed

This class implements the EVA and EVA02 models that were based on the BEiT ViT variant
• EVA - abs pos embed, global avg pool

• EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer)

212 Chapter 2. Documentation

EIR

class timm.models.focalnet.FocalNet(in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg',
embed_dim: int = 96, depths: ~typing.Tuple[int, ...] = (2, 2, 6, 2),
mlp_ratio: float = 4.0, focal_levels: ~typing.Tuple[int, ...] = (2, 2, 2,
2), focal_windows: ~typing.Tuple[int, ...] = (3, 3, 3, 3),
use_overlap_down: bool = False, use_post_norm: bool = False,
use_post_norm_in_modulation: bool = False, normalize_modulator:
bool = False, head_hidden_size: int | None = None, head_init_scale:
float = 1.0, layerscale_value: float | None = None, drop_rate: bool =
0.0, proj_drop_rate: bool = 0.0, drop_path_rate: bool = 0.1,
norm_layer: ~typing.Callable = functools.partial(<class
'timm.layers.norm.LayerNorm2d'>, eps=1e-05))

“ Focal Modulation Networks (FocalNets)

class timm.models.gcvit.GlobalContextVit(in_chans: int = 3, num_classes: int = 1000, global_pool: str =
'avg', img_size: Tuple[int, int] = 224, window_ratio: Tuple[int,
...] = (32, 32, 16, 32), window_size: Tuple[int, ...] = None,
embed_dim: int = 64, depths: Tuple[int, ...] = (3, 4, 19, 5),
num_heads: Tuple[int, ...] = (2, 4, 8, 16), mlp_ratio: float =
3.0, qkv_bias: bool = True, layer_scale: float | None = None,
drop_rate: float = 0.0, proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0,
weight_init='', act_layer: str = 'gelu', norm_layer: str =
'layernorm2d', norm_layer_cl: str = 'layernorm', norm_eps:
float = 1e-05)

class timm.models.ghostnet.GhostNet(cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32,
global_pool='avg', drop_rate=0.2, version='v1')

class timm.models.hgnet.HighPerfGpuNet(cfg, in_chans=3, num_classes=1000, global_pool='avg',
use_last_conv=True, class_expand=2048, drop_rate=0.0,
drop_path_rate=0.0, use_lab=False, **kwargs)

class timm.models.hrnet.HighResolutionNet(cfg, in_chans=3, num_classes=1000, output_stride=32,
global_pool='avg', drop_rate=0.0, head='classification',
**kwargs)

class timm.models.inception_resnet_v2.InceptionResnetV2(num_classes=1000, in_chans=3,
drop_rate=0.0, output_stride=32,
global_pool='avg',
norm_layer='batchnorm2d',
norm_eps=0.001, act_layer='relu')

class timm.models.inception_v3.InceptionV3(num_classes=1000, in_chans=3, drop_rate=0.0,
global_pool='avg', aux_logits=False,
norm_layer='batchnorm2d', norm_eps=0.001,
act_layer='relu')

Inception-V3

class timm.models.inception_v4.InceptionV4(num_classes=1000, in_chans=3, output_stride=32,
drop_rate=0.0, global_pool='avg',
norm_layer='batchnorm2d', norm_eps=0.001,
act_layer='relu')

2.6. API 213

EIR

class timm.models.levit.Levit(img_size=224, in_chans=3, num_classes=1000, embed_dim=(192,),
key_dim=64, depth=(12,), num_heads=(3,), attn_ratio=2.0, mlp_ratio=2.0,
stem_backbone=None, stem_stride=None, stem_type='s16',
down_op='subsample', act_layer='hard_swish', attn_act_layer=None,
use_conv=False, global_pool='avg', drop_rate=0.0, drop_path_rate=0.0)

Vision Transformer with support for patch or hybrid CNN input stage

NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems w/ train scripts that
don’t take tuple outputs,

class timm.models.maxxvit.MaxxVitCfg(embed_dim: Tuple[int, ...] = (96, 192, 384, 768), depths: Tuple[int,
...] = (2, 3, 5, 2), block_type: Tuple[Union[str, Tuple[str, ...]], ...] =
('C', 'C', 'T', 'T'), stem_width: Union[int, Tuple[int, int]] = 64,
stem_bias: bool = False, conv_cfg:
timm.models.maxxvit.MaxxVitConvCfg = <factory>,
transformer_cfg: timm.models.maxxvit.MaxxVitTransformerCfg =
<factory>, head_hidden_size: int = None, weight_init: str =
'vit_eff')

class timm.models.metaformer.MetaFormer(in_chans=3, num_classes=1000, global_pool='avg', depths=(2,
2, 6, 2), dims=(64, 128, 320, 512), token_mixers=<class
'timm.models.metaformer.Pooling'>, mlp_act=<class
'timm.models.metaformer.StarReLU'>, mlp_bias=False,
drop_path_rate=0.0, proj_drop_rate=0.0, drop_rate=0.0,
layer_scale_init_values=None, res_scale_init_values=(None,
None, 1.0, 1.0), downsample_norm=<class
'timm.models.metaformer.LayerNorm2dNoBias'>,
norm_layers=<class
'timm.models.metaformer.LayerNorm2dNoBias'>,
output_norm=<class 'timm.layers.norm.LayerNorm2d'>,
use_mlp_head=True, **kwargs)

A PyTorch impl of
[MetaFormer Baselines for Vision -] https://arxiv.org/abs/2210.13452

Parameters
• in_chans (int) – Number of input image channels.

• num_classes (int) – Number of classes for classification head.

• global_pool – Pooling for classifier head.

• depths (list or tuple) – Number of blocks at each stage.

• dims (list or tuple) – Feature dimension at each stage.

• token_mixers (list, tuple or token_fcn) – Token mixer for each stage.

• mlp_act – Activation layer for MLP.

• mlp_bias (boolean) – Enable or disable mlp bias term.

• drop_path_rate (float) – Stochastic depth rate.

• drop_rate (float) – Dropout rate.

• layer_scale_init_values (list, tuple, float or None) – Init value for Layer
Scale. None means not use the layer scale. Form: https://arxiv.org/abs/2103.17239.

214 Chapter 2. Documentation

https://arxiv.org/abs/2210.13452
https://arxiv.org/abs/2103.17239

EIR

• res_scale_init_values (list, tuple, float or None) – Init value for res Scale on
residual connections. None means not use the res scale. From: https://arxiv.org/abs/2110.
09456.

• downsample_norm (nn.Module) – Norm layer used in stem and downsampling layers.

• norm_layers (list, tuple or norm_fcn) – Norm layers for each stage.

• output_norm – Norm layer before classifier head.

• use_mlp_head – Use MLP classification head.

class timm.models.mobilenetv3.MobileNetV3(block_args: ~typing.List[~typing.List[~typing.Dict[str,
~typing.Any]]], num_classes: int = 1000, in_chans: int = 3,
stem_size: int = 16, fix_stem: bool = False, num_features: int
= 1280, head_bias: bool = True, pad_type: str | int |
~typing.Tuple[int, int] = '', act_layer: str | ~typing.Callable |
~typing.Type[~torch.nn.modules.module.Module] | None =
None, norm_layer: str | ~typing.Callable |
~typing.Type[~torch.nn.modules.module.Module] | None =
None, se_layer: str | ~typing.Callable |
~typing.Type[~torch.nn.modules.module.Module] | None =
None, se_from_exp: bool = True, round_chs_fn:
~typing.Callable = <function round_channels>, drop_rate:
float = 0.0, drop_path_rate: float = 0.0, global_pool: str =
'avg')

MobiletNet-V3

Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific
‘efficient head’, where global pooling is done before the head convolution without a final batch-norm layer before
the classifier.

Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244

Other architectures utilizing MobileNet-V3 efficient head that are supported by this impl include:
• HardCoRe-NAS - https://arxiv.org/abs/2102.11646 (defn in hardcorenas.py uses this class)

• FBNet-V3 - https://arxiv.org/abs/2006.02049

• LCNet - https://arxiv.org/abs/2109.15099

class timm.models.mvitv2.MultiScaleVit(cfg: MultiScaleVitCfg, img_size: Tuple[int, int] = (224, 224),
in_chans: int = 3, global_pool: str | None = None, num_classes:
int = 1000, drop_path_rate: float = 0.0, drop_rate: float = 0.0)

Improved Multiscale Vision Transformers for Classification and Detection Yanghao Li*, Chao-Yuan Wu*, Haoqi
Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik,

Christoph Feichtenhofer*

https://arxiv.org/abs/2112.01526

Multiscale Vision Transformers Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan,
Jitendra Malik,

Christoph Feichtenhofer*

https://arxiv.org/abs/2104.11227

class timm.models.nasnet.NASNetALarge(num_classes=1000, in_chans=3, stem_size=96,
channel_multiplier=2, num_features=4032, output_stride=32,
drop_rate=0.0, global_pool='avg', pad_type='same')

2.6. API 215

https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/2102.11646
https://arxiv.org/abs/2006.02049
https://arxiv.org/abs/2109.15099
https://arxiv.org/abs/2112.01526
https://arxiv.org/abs/2104.11227

EIR

NASNetALarge (6 @ 4032)

class timm.models.nest.Nest(img_size=224, in_chans=3, patch_size=4, num_levels=3, embed_dims=(128,
256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), num_classes=1000,
mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, proj_drop_rate=0.0,
attn_drop_rate=0.0, drop_path_rate=0.5, norm_layer=None, act_layer=None,
pad_type='', weight_init='', global_pool='avg')

Nested Transformer (NesT)

A PyTorch impl of
[Aggregating Nested Transformers]

• https://arxiv.org/abs/2105.12723

class timm.models.nfnet.NormFreeNet(cfg: NfCfg, num_classes: int = 1000, in_chans: int = 3, global_pool:
str = 'avg', output_stride: int = 32, drop_rate: float = 0.0,
drop_path_rate: float = 0.0, **kwargs)

Normalization-Free Network

As described in : Characterizing signal propagation to close the performance gap in unnormalized ResNets

• https://arxiv.org/abs/2101.08692

and High-Performance Large-Scale Image Recognition Without Normalization - https://arxiv.org/abs/2102.
06171

This model aims to cover both the NFRegNet-Bx models as detailed in the paper’s code snippets and the (preact)
ResNet models described earlier in the paper.

There are a few differences:
• channels are rounded to be divisible by 8 by default (keep tensor core kernels happy),

this changes channel dim and param counts slightly from the paper models

• activation correcting gamma constants are moved into the ScaledStdConv as it has less
performance

impact in PyTorch when done with the weight scaling there. This likely wasn’t a concern in the
JAX impl.

• a config option gamma_in_act can be enabled to not apply gamma in StdConv as described
above, but

apply it in each activation. This is slightly slower, numerically different, but matches official impl.

• skipinit is disabled by default, it seems to have a rather drastic impact on GPU memory use and
throughput

for what it is/does. Approx 8-10% throughput loss.

class timm.models.pit.PoolingVisionTransformer(img_size: int = 224, patch_size: int = 16, stride: int =
8, stem_type: str = 'overlap', base_dims: Sequence[int]
= (48, 48, 48), depth: Sequence[int] = (2, 6, 4), heads:
Sequence[int] = (2, 4, 8), mlp_ratio: float = 4,
num_classes=1000, in_chans=3, global_pool='token',
distilled=False, drop_rate=0.0, pos_drop_drate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0,
drop_path_rate=0.0)

Pooling-based Vision Transformer

A PyTorch implement of ‘Rethinking Spatial Dimensions of Vision Transformers’
• https://arxiv.org/abs/2103.16302

216 Chapter 2. Documentation

https://arxiv.org/abs/2105.12723
https://arxiv.org/abs/2101.08692
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2103.16302

EIR

class timm.models.pnasnet.PNASNet5Large(num_classes=1000, in_chans=3, output_stride=32,
drop_rate=0.0, global_pool='avg', pad_type='')

class timm.models.pvt_v2.PyramidVisionTransformerV2(in_chans=3, num_classes=1000,
global_pool='avg', depths=(3, 4, 6, 3),
embed_dims=(64, 128, 256, 512),
num_heads=(1, 2, 4, 8), sr_ratios=(8, 4, 2, 1),
mlp_ratios=(8.0, 8.0, 4.0, 4.0), qkv_bias=True,
linear=False, drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0,
drop_path_rate=0.0, norm_layer=<class
'timm.layers.norm.LayerNorm'>)

class timm.models.regnet.RegNet(cfg: RegNetCfg, in_chans=3, num_classes=1000, output_stride=32,
global_pool='avg', drop_rate=0.0, drop_path_rate=0.0,
zero_init_last=True, **kwargs)

RegNet-X, Y, and Z Models

Paper: https://arxiv.org/abs/2003.13678 Original Impl: https://github.com/facebookresearch/pycls/blob/master/
pycls/models/regnet.py

class timm.models.repghost.RepGhostNet(cfgs, num_classes=1000, width=1.0, in_chans=3,
output_stride=32, global_pool='avg', drop_rate=0.2,
reparam=True)

class timm.models.repvit.RepVit(in_chans=3, img_size=224, embed_dim=(48,), depth=(2,), mlp_ratio=2,
global_pool='avg', kernel_size=3, num_classes=1000, act_layer=<class
'torch.nn.modules.activation.GELU'>, distillation=True, drop_rate=0.0,
legacy=False)

class timm.models.resnet.ResNet(block: ~timm.models.resnet.BasicBlock | ~timm.models.resnet.Bottleneck,
layers: ~typing.List[int], num_classes: int = 1000, in_chans: int = 3,
output_stride: int = 32, global_pool: str = 'avg', cardinality: int = 1,
base_width: int = 64, stem_width: int = 64, stem_type: str = '',
replace_stem_pool: bool = False, block_reduce_first: int = 1,
down_kernel_size: int = 1, avg_down: bool = False, act_layer: str |
~typing.Callable | ~typing.Type[~torch.nn.modules.module.Module] =
<class 'torch.nn.modules.activation.ReLU'>, norm_layer: str |
~typing.Callable | ~typing.Type[~torch.nn.modules.module.Module] =
<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, aa_layer:
~typing.Type[~torch.nn.modules.module.Module] | None = None,
drop_rate: float = 0.0, drop_path_rate: float = 0.0, drop_block_rate: float
= 0.0, zero_init_last: bool = True, block_args: ~typing.Dict[str,
~typing.Any] | None = None)

ResNet / ResNeXt / SE-ResNeXt / SE-Net

This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that
• have > 1 stride in the 3x3 conv layer of bottleneck

• have conv-bn-act ordering

This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s
variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the ‘Bag
of Tricks’ paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default.

ResNet variants (the same modifications can be used in SE/ResNeXt models as well):

2.6. API 217

https://arxiv.org/abs/2003.13678
https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
https://arxiv.org/pdf/1812.01187

EIR

• normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet ‘v1.5’, Gluon
v1b

• c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64)

• d - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64), average pool in downsample

• e - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128), average pool in downsample

• s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128)

• t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample

• tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample

ResNeXt
• normal - 7x7 stem, stem_width = 64, standard cardinality and base widths

• same c,d, e, s variants as ResNet can be enabled

SE-ResNeXt
• normal - 7x7 stem, stem_width = 64

• same c, d, e, s variants as ResNet can be enabled

SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64,
reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block

class timm.models.resnetv2.ResNetV2(layers, channels=(256, 512, 1024, 2048), num_classes=1000,
in_chans=3, global_pool='avg', output_stride=32, width_factor=1,
stem_chs=64, stem_type='', avg_down=False, preact=True,
act_layer=<class 'torch.nn.modules.activation.ReLU'>,
norm_layer=functools.partial(<class
'timm.layers.norm_act.GroupNormAct'>, num_groups=32),
conv_layer=<class 'timm.layers.std_conv.StdConv2d'>,
drop_rate=0.0, drop_path_rate=0.0, zero_init_last=False)

Implementation of Pre-activation (v2) ResNet mode.

class timm.models.rexnet.RexNet(in_chans=3, num_classes=1000, global_pool='avg', output_stride=32,
initial_chs=16, final_chs=180, width_mult=1.0, depth_mult=1.0,
se_ratio=0.08333333333333333, ch_div=1, act_layer='swish',
dw_act_layer='relu6', drop_rate=0.2, drop_path_rate=0.0)

class timm.models.selecsls.SelecSls(cfg, num_classes=1000, in_chans=3, drop_rate=0.0,
global_pool='avg')

SelecSls42 / SelecSls60 / SelecSls84

Parameters
• cfg (network config dictionary specifying block type, feature, and
head args)

• num_classes (int, default 1000) – Number of classification classes.

• in_chans (int, default 3) – Number of input (color) channels.

• drop_rate (float, default 0.) – Dropout probability before classifier, for training

• global_pool (str, default 'avg') – Global pooling type. One of ‘avg’, ‘max’, ‘avg-
max’, ‘catavgmax’

218 Chapter 2. Documentation

EIR

class timm.models.senet.SENet(block, layers, groups, reduction, drop_rate=0.2, in_chans=3, inplanes=64,
input_3x3=False, downsample_kernel_size=1, downsample_padding=0,
num_classes=1000, global_pool='avg')

class timm.models.sequencer.Sequencer2d(num_classes=1000, img_size=224, in_chans=3,
global_pool='avg', layers=(4, 3, 8, 3), patch_sizes=(7, 2, 2, 1),
embed_dims=(192, 384, 384, 384), hidden_sizes=(48, 96, 96,
96), mlp_ratios=(3.0, 3.0, 3.0, 3.0), block_layer=<class
'timm.models.sequencer.Sequencer2dBlock'>, rnn_layer=<class
'timm.models.sequencer.LSTM2d'>, mlp_layer=<class
'timm.layers.mlp.Mlp'>, norm_layer=functools.partial(<class
'torch.nn.modules.normalization.LayerNorm'>, eps=1e-06),
act_layer=<class 'torch.nn.modules.activation.GELU'>,
num_rnn_layers=1, bidirectional=True, union='cat',
with_fc=True, drop_rate=0.0, drop_path_rate=0.0, nlhb=False,
stem_norm=False)

class timm.models.swin_transformer.SwinTransformer(img_size: int | ~typing.Tuple[int, int] = 224,
patch_size: int = 4, in_chans: int = 3,
num_classes: int = 1000, global_pool: str = 'avg',
embed_dim: int = 96, depths: ~typing.Tuple[int,
...] = (2, 2, 6, 2), num_heads: ~typing.Tuple[int,
...] = (3, 6, 12, 24), head_dim: int | None = None,
window_size: int | ~typing.Tuple[int, int] = 7,
mlp_ratio: float = 4.0, qkv_bias: bool = True,
drop_rate: float = 0.0, proj_drop_rate: float =
0.0, attn_drop_rate: float = 0.0, drop_path_rate:
float = 0.1, embed_layer: ~typing.Callable =
<class 'timm.layers.patch_embed.PatchEmbed'>,
norm_layer: str | ~typing.Callable = <class
'torch.nn.modules.normalization.LayerNorm'>,
weight_init: str = '', **kwargs)

Swin Transformer

A PyTorch impl of
[Swin Transformer: Hierarchical Vision Transformer using Shifted Windows -] https://arxiv.org/pdf/2103.
14030

class timm.models.swin_transformer_v2.SwinTransformerV2(img_size: int | ~typing.Tuple[int, int] =
224, patch_size: int = 4, in_chans: int = 3,
num_classes: int = 1000, global_pool: str
= 'avg', embed_dim: int = 96, depths:
~typing.Tuple[int, ...] = (2, 2, 6, 2),
num_heads: ~typing.Tuple[int, ...] = (3, 6,
12, 24), window_size: int |
~typing.Tuple[int, int] = 7, mlp_ratio: float
= 4.0, qkv_bias: bool = True, drop_rate:
float = 0.0, proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.1, norm_layer:
~typing.Callable = <class
'torch.nn.modules.normalization.LayerNorm'>,
pretrained_window_sizes:
~typing.Tuple[int, ...] = (0, 0, 0, 0),
**kwargs)

2.6. API 219

https://arxiv.org/pdf/2103.14030
https://arxiv.org/pdf/2103.14030

EIR

Swin Transformer V2

A PyTorch impl of
[Swin Transformer V2: Scaling Up Capacity and Resolution]

• https://arxiv.org/abs/2111.09883

class timm.models.swin_transformer_v2_cr.SwinTransformerV2Cr(img_size: ~typing.Tuple[int, int] =
(224, 224), patch_size: int = 4,
window_size: int | None = None,
img_window_ratio: int = 32,
in_chans: int = 3, num_classes: int
= 1000, embed_dim: int = 96,
depths: ~typing.Tuple[int, ...] = (2,
2, 6, 2), num_heads:
~typing.Tuple[int, ...] = (3, 6, 12,
24), mlp_ratio: float = 4.0,
init_values: float | None = 0.0,
drop_rate: float = 0.0,
proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: ~typ-
ing.Type[~torch.nn.modules.module.Module]
= <class
'torch.nn.modules.normalization.LayerNorm'>,
extra_norm_period: int = 0,
extra_norm_stage: bool = False,
sequential_attn: bool = False,
global_pool: str = 'avg',
weight_init='skip', **kwargs:
~typing.Any)

Swin Transformer V2
A PyTorch impl of

[Swin Transformer V2: Scaling Up Capacity and Resolution -] https://arxiv.org/pdf/2111.09883

Parameters
• img_size – Input resolution.

• window_size – Window size. If None, img_size // window_div

• img_window_ratio – Window size to image size ratio.

• patch_size – Patch size.

• in_chans – Number of input channels.

• depths – Depth of the stage (number of layers).

• num_heads – Number of attention heads to be utilized.

• embed_dim – Patch embedding dimension.

• num_classes – Number of output classes.

• mlp_ratio – Ratio of the hidden dimension in the FFN to the input channels.

• drop_rate – Dropout rate.

220 Chapter 2. Documentation

https://arxiv.org/abs/2111.09883
https://arxiv.org/pdf/2111.09883

EIR

• proj_drop_rate – Projection dropout rate.

• attn_drop_rate – Dropout rate of attention map.

• drop_path_rate – Stochastic depth rate.

• norm_layer – Type of normalization layer to be utilized.

• extra_norm_period – Insert extra norm layer on main branch every N (period) blocks in
stage

• extra_norm_stage – End each stage with an extra norm layer in main branch

• sequential_attn – If true sequential self-attention is performed.

get_classifier()→ Module
Method returns the classification head of the model. :returns: Current classification head :rtype: head
(nn.Module)

reset_classifier(num_classes: int, global_pool: str | None = None)→ None
Method results the classification head

Parameters
• num_classes (int) – Number of classes to be predicted

• global_pool (str) – Unused

update_input_size(new_img_size: Tuple[int, int] | None = None, new_window_size: int | None = None,
img_window_ratio: int = 32)→ None

Method updates the image resolution to be processed and window size and so the pair-wise relative posi-
tions.

Parameters
• new_window_size (Optional[int]) – New window size, if None based on

new_img_size // window_div

• new_img_size (Optional[Tuple[int, int]]) – New input resolution, if None cur-
rent resolution is used

• img_window_ratio (int) – divisor for calculating window size from image size

class timm.models.tiny_vit.TinyVit(in_chans=3, num_classes=1000, global_pool='avg',
embed_dims=(96, 192, 384, 768), depths=(2, 2, 6, 2), num_heads=(3,
6, 12, 24), window_sizes=(7, 7, 14, 7), mlp_ratio=4.0, drop_rate=0.0,
drop_path_rate=0.1, use_checkpoint=False,
mbconv_expand_ratio=4.0, local_conv_size=3, act_layer=<class
'torch.nn.modules.activation.GELU'>)

class timm.models.tnt.TNT(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
global_pool='token', embed_dim=768, inner_dim=48, depth=12,
num_heads_inner=4, num_heads_outer=12, mlp_ratio=4.0, qkv_bias=False,
drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0, attn_drop_rate=0.0,
drop_path_rate=0.0, norm_layer=<class
'torch.nn.modules.normalization.LayerNorm'>, first_stride=4)

Transformer in Transformer - https://arxiv.org/abs/2103.00112

class timm.models.tresnet.TResNet(layers, in_chans=3, num_classes=1000, width_factor=1.0, v2=False,
global_pool='fast', drop_rate=0.0, drop_path_rate=0.0)

2.6. API 221

https://arxiv.org/abs/2103.00112

EIR

class timm.models.twins.Twins(img_size=224, patch_size=4, in_chans=3, num_classes=1000,
global_pool='avg', embed_dims=(64, 128, 256, 512), num_heads=(1, 2, 4,
8), mlp_ratios=(4, 4, 4, 4), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1),
wss=None, drop_rate=0.0, pos_drop_rate=0.0, proj_drop_rate=0.0,
attn_drop_rate=0.0, drop_path_rate=0.0,
norm_layer=functools.partial(<class
'torch.nn.modules.normalization.LayerNorm'>, eps=1e-06),
block_cls=<class 'timm.models.twins.Block'>)

Twins Vision Transfomer (Revisiting Spatial Attention)

Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git

class timm.models.vgg.VGG(cfg: ~typing.List[~typing.Any], num_classes: int = 1000, in_chans: int = 3,
output_stride: int = 32, mlp_ratio: float = 1.0, act_layer:
~torch.nn.modules.module.Module = <class 'torch.nn.modules.activation.ReLU'>,
conv_layer: ~torch.nn.modules.module.Module = <class
'torch.nn.modules.conv.Conv2d'>, norm_layer: ~torch.nn.modules.module.Module
= None, global_pool: str = 'avg', drop_rate: float = 0.0)

class timm.models.visformer.Visformer(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
init_channels=32, embed_dim=384, depth=12, num_heads=6,
mlp_ratio=4.0, drop_rate=0.0, pos_drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
norm_layer=<class 'timm.layers.norm.LayerNorm2d'>,
attn_stage='111', use_pos_embed=True, spatial_conv='111',
vit_stem=False, group=8, global_pool='avg', conv_init=False,
embed_norm=None)

222 Chapter 2. Documentation

https://github.com/whai362/PVT.git

EIR

class timm.models.vision_transformer.VisionTransformer(img_size: int | ~typing.Tuple[int, int] = 224,
patch_size: int | ~typing.Tuple[int, int] = 16,
in_chans: int = 3, num_classes: int = 1000,
global_pool: ~typing.Literal['', 'avg', 'token',
'map'] = 'token', embed_dim: int = 768,
depth: int = 12, num_heads: int = 12,
mlp_ratio: float = 4.0, qkv_bias: bool =
True, qk_norm: bool = False, init_values:
float | None = None, class_token: bool =
True, no_embed_class: bool = False,
reg_tokens: int = 0, pre_norm: bool =
False, fc_norm: bool | None = None,
dynamic_img_size: bool = False,
dynamic_img_pad: bool = False, drop_rate:
float = 0.0, pos_drop_rate: float = 0.0,
patch_drop_rate: float = 0.0,
proj_drop_rate: float = 0.0, attn_drop_rate:
float = 0.0, drop_path_rate: float = 0.0,
weight_init: ~typing.Literal['skip', 'jax',
'jax_nlhb', 'moco', ''] = '', fix_init: bool =
False, embed_layer: ~typing.Callable =
<class
'timm.layers.patch_embed.PatchEmbed'>,
norm_layer: str | ~typing.Callable | ~typ-
ing.Type[~torch.nn.modules.module.Module]
| None = None, act_layer: str |
~typing.Callable | ~typ-
ing.Type[~torch.nn.modules.module.Module]
| None = None, block_fn: ~typ-
ing.Type[~torch.nn.modules.module.Module]
= <class
'timm.models.vision_transformer.Block'>,
mlp_layer: ~typ-
ing.Type[~torch.nn.modules.module.Module]
= <class 'timm.layers.mlp.Mlp'>)

Vision Transformer

A PyTorch impl of
[An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale]

• https://arxiv.org/abs/2010.11929

get_intermediate_layers(x: Tensor, n: int | Sequence = 1, reshape: bool = False, return_prefix_tokens:
bool = False, norm: bool = False)→ Tuple[Tensor | Tuple[Tensor]]

Intermediate layer accessor (NOTE: This is a WIP experiment). Inspired by DINO / DINOv2 interface

2.6. API 223

https://arxiv.org/abs/2010.11929

EIR

class timm.models.vision_transformer_relpos.VisionTransformerRelPos(img_size: int |
~typing.Tuple[int, int] =
224, patch_size: int |
~typing.Tuple[int, int] =
16, in_chans: int = 3,
num_classes: int = 1000,
global_pool:
~typing.Literal['', 'avg',
'token', 'map'] = 'avg',
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
qk_norm: bool = False,
init_values: float | None =
1e-06, class_token: bool =
False, fc_norm: bool =
False, rel_pos_type: str =
'mlp', rel_pos_dim: int |
None = None,
shared_rel_pos: bool =
False, drop_rate: float =
0.0, proj_drop_rate: float =
0.0, attn_drop_rate: float =
0.0, drop_path_rate: float
= 0.0, weight_init:
~typing.Literal['skip', 'jax',
'moco', ''] = 'skip', fix_init:
bool
= False, embed_layer: ~typ-
ing.Type[~torch.nn.modules.module.Module]
= <class
'timm.layers.patch_embed.PatchEmbed'>,
norm_layer: str |
~typing.Callable | ~typ-
ing.Type[~torch.nn.modules.module.Module]
| None = None, act_layer:
str | ~typing.Callable |
~typ-
ing.Type[~torch.nn.modules.module.Module]
| None = None, block_fn:
~typ-
ing.Type[~torch.nn.modules.module.Module]
= <class
'timm.models.vision_transformer_relpos.RelPosBlock'>)

Vision Transformer w/ Relative Position Bias

Differing from classic vit, this impl
• uses relative position index (swin v1 / beit) or relative log coord + mlp (swin v2) pos embed

• defaults to no class token (can be enabled)

• defaults to global avg pool for head (can be changed)

224 Chapter 2. Documentation

EIR

• layer-scale (residual branch gain) enabled

class timm.models.vision_transformer_sam.VisionTransformerSAM(img_size: int = 1024, patch_size:
int = 16, in_chans: int = 3,
num_classes: int = 768,
embed_dim: int = 768, depth: int =
12, num_heads: int = 12,
mlp_ratio: float = 4.0, qkv_bias:
bool = True, qk_norm: bool =
False, init_values: float | None =
None, pre_norm: bool = False,
drop_rate: float = 0.0,
pos_drop_rate: float = 0.0,
patch_drop_rate: float = 0.0,
proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
weight_init: str = '', embed_layer:
~typing.Callable =
functools.partial(<class
'timm.layers.patch_embed.PatchEmbed'>,
output_fmt=<Format.NHWC:
'NHWC'>, strict_img_size=False),
norm_layer: ~typing.Callable |
None = <class
'torch.nn.modules.normalization.LayerNorm'>,
act_layer: ~typing.Callable | None
= <class
'torch.nn.modules.activation.GELU'>,
block_fn: ~typing.Callable =
<class
'timm.models.vision_transformer_sam.Block'>,
mlp_layer: ~typing.Callable =
<class 'timm.layers.mlp.Mlp'>,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
use_rope: bool = False,
window_size: int = 14,
global_attn_indexes:
~typing.Tuple[int, ...] = (),
neck_chans: int = 256,
global_pool: str = 'avg',
head_hidden_size: int | None =
None, ref_feat_shape:
~typing.Tuple[~typing.Tuple[int,
int], ~typing.Tuple[int, int]] | None
= None)

Vision Transformer for Segment-Anything Model(SAM)

A PyTorch impl of
[Exploring Plain Vision Transformer Backbones for Object Detection or Segment Anything Model (SAM)]

• https://arxiv.org/abs/2010.11929

2.6. API 225

https://arxiv.org/abs/2010.11929

EIR

class timm.models.volo.VOLO(layers, img_size=224, in_chans=3, num_classes=1000, global_pool='token',
patch_size=8, stem_hidden_dim=64, embed_dims=None, num_heads=None,
downsamples=(True, False, False, False), outlook_attention=(True, False, False,
False), mlp_ratio=3.0, qkv_bias=False, drop_rate=0.0, pos_drop_rate=0.0,
attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=<class
'torch.nn.modules.normalization.LayerNorm'>, post_layers=('ca', 'ca'),
use_aux_head=True, use_mix_token=False, pooling_scale=2)

Vision Outlooker, the main class of our model

forward_train(x)
A separate forward fn for training with mix_token (if a train script supports). Combining multiple modes
in as single forward with different return types is torchscript hell.

class timm.models.vovnet.VovNet(cfg, in_chans=3, num_classes=1000, global_pool='avg',
output_stride=32, norm_layer=<class
'timm.layers.norm_act.BatchNormAct2d'>, act_layer=<class
'torch.nn.modules.activation.ReLU'>, drop_rate=0.0, drop_path_rate=0.0,
**kwargs)

class timm.models.xception.Xception(num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg')
Xception optimized for the ImageNet dataset, as specified in https://arxiv.org/pdf/1610.02357.pdf

class timm.models.xception_aligned.XceptionAligned(block_cfg: ~typing.List[~typing.Dict],
num_classes: int = 1000, in_chans: int = 3,
output_stride: int = 32, preact: bool = False,
act_layer:
~typing.Type[~torch.nn.modules.module.Module]
= <class 'torch.nn.modules.activation.ReLU'>,
norm_layer:
~typing.Type[~torch.nn.modules.module.Module]
= <class
'torch.nn.modules.batchnorm.BatchNorm2d'>,
drop_rate: float = 0.0, drop_path_rate: float =
0.0, global_pool: str = 'avg')

Modified Aligned Xception

class timm.models.xcit.Xcit(img_size=224, patch_size=16, in_chans=3, num_classes=1000,
global_pool='token', embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4.0, qkv_bias=True, drop_rate=0.0, pos_drop_rate=0.0,
proj_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True,
eta=1.0, tokens_norm=False)

Based on timm and DeiT code bases https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/facebookresearch/deit/

226 Chapter 2. Documentation

https://arxiv.org/pdf/1610.02357.pdf
https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/facebookresearch/deit/

EIR

2.6.3 Sequence Models

This page contains the list of external sequence models that can be used with EIR, coming from the excellent Trans-
formers library.

There are 3 ways to use these models:

• Configure and train specific architectures (e.g. BERT with chosen number of layers) from scratch.

• Train a specific architecture (e.g. bert-base-uncased) from scratch.

• Use a pre-trained model (e.g. bert-base-uncased) and fine-tune it.

Please refer to this page for a complete list of pre-defined architectures, with the option of using pre-trained weights.

Configurable Models

The following models can be configured and trained from scratch.

The model type is specified in the model_type field of the configuration, while the model specific configuration is
specified in the model_init_config field.

For example, the LongFormer architecture includes the num_attention_heads and num_hidden_layers parame-
ters, and can be configured as follows:

Listing 122: input_configurable_sequence_model.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews_longformer
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 512
split_on: " "
min_freq: 10
tokenizer: "basic_english"
tokenizer_language: "en"

model_config:
model_type: longformer
pretrained_model: false
position: embed
pool: avg
model_init_config:

num_hidden_layers: 2
hidden_size: 32
num_attention_heads: 2
intermediate_size: 32
attention_window: 64
max_position_embeddings: 1024

Pretrained Models
We can also fine-tune or train a specific architecture from scratch. For example, a tiny-bert model like so:

2.6. API 227

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/models

EIR

Listing 123: input_pre_trained_sequence_model.yaml

input_info:
input_source: eir_tutorials/a_using_eir/04_pretrained_sequence_tutorial/data/IMDB/IMDB_

→˓Reviews
input_name: imdb_reviews_tiny_bert
input_type: sequence

input_type_info:
sampling_strategy_if_longer: "uniform"
max_length: 512
split_on: " "
min_freq: 10

model_config:
model_type: "prajjwal1/bert-tiny"
pretrained_model: true
freeze_pretrained_model: false
position: embed
pool: avg

Below is a list of the configurable models that can be used with EIR.

class transformers.models.albert.configuration_albert.AlbertConfig(vocab_size=30000,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
hidden_act='gelu_new',
hidden_dropout_prob=0,
atten-
tion_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout_prob=0.1,
posi-
tion_embedding_type='absolute',
pad_token_id=0,
bos_token_id=2,
eos_token_id=3, **kwargs)

The ALBERT model was proposed in ALBERT: A Lite BERT for Self-supervised Learning of Language Representa-
tions by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. It presents
two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT:

• Splitting the embedding matrix into two smaller matrices.

• Using repeating layers split among groups.

The abstract from the paper is the following:

228 Chapter 2. Documentation

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942

EIR

Increasing model size when pretraining natural language representations often results in improved performance on
downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limita-
tions, longer training times, and unexpected model degradation. To address these problems, we present two parameter-
reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical
evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We
also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps down-
stream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the
GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.

Tips:

• ALBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right
rather than the left.

• ALBERT uses repeating layers which results in a small memory footprint, however the computational cost re-
mains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the
same number of (repeating) layers.

• Embedding size E is different from hidden size H justified because the embeddings are context independent
(one embedding vector represents one token), whereas hidden states are context dependent (one hidden state
represents a sequence of tokens) so it’s more logical to have H >> E. Also, the embedding matrix is large since
it’s V x E (V being the vocab size). If E < H, it has less parameters.

• Layers are split in groups that share parameters (to save memory).

Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B
(that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been
swapped or not.

This model was contributed by lysandre. This model jax version was contributed by kamalkraj. The original code can
be found here.

Args:
vocab_size (int, optional, defaults to 30000):

Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling AlbertModel or TFAlbertModel.

embedding_size (int, optional, defaults to 128):
Dimensionality of vocabulary embeddings.

hidden_size (int, optional, defaults to 4096):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_hidden_groups (int, optional, defaults to 1):
Number of groups for the hidden layers, parameters in the same group are shared.

num_attention_heads (int, optional, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 16384):
The dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

inner_group_num (int, optional, defaults to 1):
The number of inner repetition of attention and ffn.

hidden_act (str or Callable, optional, defaults to “gelu_new”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

2.6. API 229

https://huggingface.co/lysandre
https://huggingface.co/kamalkraj
https://github.com/google-research/ALBERT

EIR

hidden_dropout_prob (float, optional, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling AlbertModel or TFAlbertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

classifier_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for attached classifiers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

pad_token_id (int, optional, defaults to 0):
Padding token id.

bos_token_id (int, optional, defaults to 2):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 3):
End of stream token id.

class transformers.models.bart.configuration_bart.BartConfig(vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function='gelu',
d_model=1024, dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True, num_labels=3,
pad_token_id=1, bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2, **kwargs)

230 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

The Bart model was proposed in BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.

According to the abstract,

• Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
left-to-right decoder (like GPT).

• The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
where spans of text are replaced with a single mask token.

• BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with
gains of up to 6 ROUGE.

Tips:

• BART is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens,
decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder).
A composition of the following transformations are applied on the pretraining tasks for the encoder:

– mask random tokens (like in BERT)

– delete random tokens

– mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)

– permute sentences

– rotate the document to make it start at a specific token

This model was contributed by sshleifer. The Authors’ code can be found here.

#Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling BartModel or TFBartModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

2.6. API 231

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://huggingface.co/sshleifer
https://github.com/pytorch/fairseq/tree/master/examples/bart

EIR

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

num_labels (int, optional, defaults to 3):
The number of labels to use in BartForSequenceClassification.

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

class transformers.models.bert.configuration_bert.BertConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0, posi-
tion_embedding_type='absolute',
use_cache=True,
classifier_dropout=None, **kwargs)

232 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556

EIR

The BERT model was proposed in BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It’s a bidirectional transformer pretrained using
a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the
Toronto Book Corpus and Wikipedia.

The abstract from the paper is the following:

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Represen-
tations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidi-
rectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a
result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art
models for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.

BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural lan-
guage processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Tips:

• BERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives.
It is efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.

• Corrupts the inputs by using random masking, more precisely, during pretraining, a given percentage of tokens
(usually 15%) is masked by:

– a special mask token with probability 0.8

– a random token different from the one masked with probability 0.1

– the same token with probability 0.1

• The model must predict the original sentence, but has a second objective: inputs are two sentences A and B
(with a separation token in between). With probability 50%, the sentences are consecutive in the corpus, in the
remaining 50% they are not related. The model has to predict if the sentences are consecutive or not.

This model was contributed by thomwolf. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling BertModel or TFBertModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

2.6. API 233

https://arxiv.org/abs/1810.04805
https://huggingface.co/thomwolf
https://github.com/google-research/bert

EIR

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling BertModel or TFBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

234 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

class transformers.models.bert_generation.configuration_bert_generation.BertGenerationConfig(vocab_size=50358,
hid-
den_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
in-
ter-
me-
di-
ate_size=4096,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
at-
ten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
po-
si-
tion_embedding_type='absolute',
use_cache=True,
**kwargs)

The BertGeneration model is a BERT model that can be leveraged for sequence-to-sequence tasks using
EncoderDecoderModel as proposed in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha
Rothe, Shashi Narayan, Aliaksei Severyn.

The abstract from the paper is the following:

Unsupervised pretraining of large neural models has recently revolutionized Natural Language Processing. By warm-
starting from the publicly released checkpoints, NLP practitioners have pushed the state-of-the-art on multiple bench-
marks while saving significant amounts of compute time. So far the focus has been mainly on the Natural Language
Understanding tasks. In this paper, we demonstrate the efficacy of pre-trained checkpoints for Sequence Generation.
We developed a Transformer-based sequence-to-sequence model that is compatible with publicly available pre-trained
BERT, GPT-2 and RoBERTa checkpoints and conducted an extensive empirical study on the utility of initializing our
model, both encoder and decoder, with these checkpoints. Our models result in new state-of-the-art results on Machine
Translation, Text Summarization, Sentence Splitting, and Sentence Fusion.

2.6. API 235

https://arxiv.org/abs/1907.12461

EIR

class transformers.models.big_bird.configuration_big_bird.BigBirdConfig(vocab_size=50358,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hid-
den_act='gelu_new',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=4096,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sep_token_id=66,
atten-
tion_type='block_sparse',
use_bias=True,
rescale_embeddings=False,
block_size=64,
num_random_blocks=3,
classi-
fier_dropout=None,
**kwargs)

The BigBird model was proposed in Big Bird: Transformers for Longer Sequences by Zaheer, Manzil and Guruganesh,
Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and
Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which
extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird
also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that
applying sparse, global, and random attention approximates full attention, while being computationally much more
efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved
performance on various long document NLP tasks, such as question answering and summarization, compared to BERT
or RoBERTa.

The abstract from the paper is the following:

Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfor-
tunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length
due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces
this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is
Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoret-
ical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence
as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of
what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We
also propose novel applications to genomics data.

Tips:

236 Chapter 2. Documentation

https://arxiv.org/abs/2007.14062

EIR

• For an in-detail explanation on how BigBird’s attention works, see this blog post.

• BigBird comes with 2 implementations: original_full & block_sparse. For the sequence length < 1024, using
original_full is advised as there is no benefit in using block_sparse attention.

• The code currently uses window size of 3 blocks and 2 global blocks.

• Sequence length must be divisible by block size.

• Current implementation supports only ITC.

• Current implementation doesn’t support num_random_blocks = 0
• BigBird is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather

than the left.

This model was contributed by vasudevgupta. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50358):

Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling BigBirdModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu_new”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 1024 or 2048 or 4096).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling BigBirdModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

2.6. API 237

https://huggingface.co/blog/big-bird
https://huggingface.co/vasudevgupta
https://github.com/google-research/bigbird

EIR

attention_type (str, optional, defaults to “block_sparse”)
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention layer
(with n^2 complexity). Possible values are “original_full” and “block_sparse”.

use_bias (bool, optional, defaults to True)
Whether to use bias in query, key, value.

rescale_embeddings (bool, optional, defaults to False)
Whether to rescale embeddings with (hidden_size ** 0.5).

block_size (int, optional, defaults to 64)
Size of each block. Useful only when attention_type == “block_sparse”.

num_random_blocks (int, optional, defaults to 3)
Each query is going to attend these many number of random blocks. Useful only when attention_type ==
“block_sparse”.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

238 Chapter 2. Documentation

EIR

class transformers.models.bigbird_pegasus.configuration_bigbird_pegasus.BigBirdPegasusConfig(vocab_size=96103,
max_position_embeddings=4096,
en-
coder_layers=16,
en-
coder_ffn_dim=4096,
en-
coder_attention_heads=16,
de-
coder_layers=16,
de-
coder_ffn_dim=4096,
de-
coder_attention_heads=16,
en-
coder_layerdrop=0.0,
de-
coder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
ac-
ti-
va-
tion_function='gelu_new',
d_model=1024,
dropout=0.1,
at-
ten-
tion_dropout=0.0,
ac-
ti-
va-
tion_dropout=0.0,
init_std=0.02,
de-
coder_start_token_id=2,
clas-
si-
fier_dropout=0.0,
scale_embedding=True,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
at-
ten-
tion_type='block_sparse',
block_size=64,
num_random_blocks=3,
use_bias=False,
**kwargs)

The BigBird model was proposed in Big Bird: Transformers for Longer Sequences by Zaheer, Manzil and Guruganesh,
Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and
Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which

2.6. API 239

https://arxiv.org/abs/2007.14062

EIR

extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird
also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that
applying sparse, global, and random attention approximates full attention, while being computationally much more
efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved
performance on various long document NLP tasks, such as question answering and summarization, compared to BERT
or RoBERTa.

The abstract from the paper is the following:

Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfor-
tunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length
due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces
this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is
Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoret-
ical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence
as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of
what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We
also propose novel applications to genomics data.

Tips:

• For an in-detail explanation on how BigBird’s attention works, see this blog post.

• BigBird comes with 2 implementations: original_full & block_sparse. For the sequence length < 1024, using
original_full is advised as there is no benefit in using block_sparse attention.

• The code currently uses window size of 3 blocks and 2 global blocks.

• Sequence length must be divisible by block size.

• Current implementation supports only ITC.

• Current implementation doesn’t support num_random_blocks = 0.

• BigBirdPegasus uses the PegasusTokenizer.

• BigBird is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

The original code can be found here.

Args:
vocab_size (int, optional, defaults to 96103):

Vocabulary size of the BigBirdPegasus model. Defines the number of different tokens that can be repre-
sented by the inputs_ids passed when calling BigBirdPegasusModel.

d_model (int, optional, defaults to 1024):
Dimension of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 16):
Number of encoder layers.

decoder_layers (int, optional, defaults to 16):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

240 Chapter 2. Documentation

https://huggingface.co/blog/big-bird
https://github.com/huggingface/transformers/blob/main/src/transformers/models/pegasus/tokenization_pegasus.py
https://github.com/google-research/bigbird

EIR

decoder_ffn_dim (int, optional, defaults to 4096):
Dimension of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimension of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu_new”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_position_embeddings (int, optional, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 1024 or 2048 or 4096).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

attention_type (str, optional, defaults to “block_sparse”)
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention layer
(with n^2 complexity) in encoder. Possible values are “original_full” and “block_sparse”.

use_bias (bool, optional, defaults to False)
Whether to use bias in query, key, value.

block_size (int, optional, defaults to 64)
Size of each block. Useful only when attention_type == “block_sparse”.

num_random_blocks (int, optional, defaults to 3)
Each query is going to attend these many number of random blocks. Useful only when attention_type ==
“block_sparse”.

scale_embeddings (bool, optional, defaults to True)
Whether to rescale embeddings with (hidden_size ** 0.5).

2.6. API 241

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556

EIR

class transformers.models.biogpt.configuration_biogpt.BioGptConfig(vocab_size=42384,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act='gelu',
hidden_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
scale_embedding=True,
use_cache=True,
layerdrop=0.0,
activation_dropout=0.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2, **kwargs)

The BioGPT model was proposed in `BioGPT: generative pre-trained transformer for biomedical text
generation and mining

<https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=
a66d9b5d-4f83-4017-bb52-405815c907b9>`__ by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer
language model for biomedical text generation and mining. BioGPT follows the Transformer language model
backbone, and is pre-trained on 15M PubMed abstracts from scratch.

The abstract from the paper is the following:

Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great
success in the general natural language domain. Among the two main branches of pre-trained language models in the
general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively
studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a
variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope.
In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale
biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that
our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on
BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA,
creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical
literature to generate fluent descriptions for biomedical terms.

Tips:

• BioGPT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting
the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it
can be observed in the run_generation.py example script.

• The model can take the past_key_values (for PyTorch) as input, which is the previously computed key/value
attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed
values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptFor-
CausalLM.forward() method for more information on its usage.

This model was contributed by kamalkraj. The original code can be found here.

242 Chapter 2. Documentation

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9
https://huggingface.co/kamalkraj
https://github.com/microsoft/BioGPT

EIR

Args:
vocab_size (int, optional, defaults to 42384):

Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling BioGptModel.

hidden_size (int, optional, defaults to 1024):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 4096):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

scale_embedding (bool, optional, defaults to True):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

layerdrop (float, optional, defaults to 0.0):
Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

pad_token_id (int, optional, defaults to 1):
Padding token id.

bos_token_id (int, optional, defaults to 0):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 2):
End of stream token id.

2.6. API 243

https://arxiv.org/abs/1909.11556

EIR

class transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig(vocab_size=8008,
max_position_embeddings=128,
en-
coder_layers=2,
en-
coder_ffn_dim=10240,
en-
coder_attention_heads=32,
de-
coder_layers=24,
de-
coder_ffn_dim=10240,
de-
coder_attention_heads=32,
en-
coder_layerdrop=0.0,
de-
coder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activa-
tion_function='gelu',
d_model=2560,
dropout=0.1,
atten-
tion_dropout=0.0,
activa-
tion_dropout=0.0,
init_std=0.02,
de-
coder_start_token_id=1,
scale_embedding=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
en-
coder_no_repeat_ngram_size=3,
forced_eos_token_id=2,
**kwargs)

The Blender chatbot model was proposed in Recipes for building an open-domain chatbot Stephen Roller, Emily Dinan,
Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau,
Jason Weston on 30 Apr 2020.

The abstract of the paper is the following:

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that
scaling neural models in the number of parameters and the size of the data they are trained on gives improved results,
we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number
of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening
to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent
persona. We show that large scale models can learn these skills when given appropriate training data and choice of
generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our
models and code publicly available. Human evaluations show our best models are superior to existing approaches in
multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this

244 Chapter 2. Documentation

https://arxiv.org/pdf/2004.13637.pdf

EIR

work by analyzing failure cases of our models.

Tips:

• Blenderbot is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right
rather than the left.

This model was contributed by sshleifer. The authors’ code can be found here .

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling BlenderbotModel or TFBlenderbotModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

max_position_embeddings (int, optional, defaults to 128):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

2.6. API 245

https://huggingface.co/sshleifer
https://github.com/facebookresearch/ParlAI
seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556

EIR

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

class transformers.models.blenderbot_small.configuration_blenderbot_small.BlenderbotSmallConfig(vocab_size=50265,
max_position_embeddings=512,
en-
coder_layers=8,
en-
coder_ffn_dim=2048,
en-
coder_attention_heads=16,
de-
coder_layers=8,
de-
coder_ffn_dim=2048,
de-
coder_attention_heads=16,
en-
coder_layerdrop=0.0,
de-
coder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
ac-
ti-
va-
tion_function='gelu',
d_model=512,
dropout=0.1,
at-
ten-
tion_dropout=0.0,
ac-
ti-
va-
tion_dropout=0.0,
init_std=0.02,
de-
coder_start_token_id=1,
scale_embedding=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs)

The Blender chatbot model was proposed in Recipes for building an open-domain chatbot Stephen Roller, Emily Dinan,
Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau,
Jason Weston on 30 Apr 2020.

The abstract of the paper is the following:

246 Chapter 2. Documentation

https://arxiv.org/pdf/2004.13637.pdf

EIR

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that
scaling neural models in the number of parameters and the size of the data they are trained on gives improved results,
we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number
of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening
to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent
persona. We show that large scale models can learn these skills when given appropriate training data and choice of
generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our
models and code publicly available. Human evaluations show our best models are superior to existing approaches in
multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this
work by analyzing failure cases of our models.

Tips:

• Blenderbot Small is a model with absolute position embeddings so it’s usually advised to pad the inputs on the
right rather than the left.

This model was contributed by patrickvonplaten. The authors’ code can be found here.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be repre-
sented by the inputs_ids passed when calling BlenderbotSmallModel or TFBlenderbotSmallModel.

d_model (int, optional, defaults to 512):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 8):
Number of encoder layers.

decoder_layers (int, optional, defaults to 8):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 2048):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 2048):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

2.6. API 247

https://huggingface.co/patrickvonplaten
https://github.com/facebookresearch/ParlAI

EIR

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

class transformers.models.bloom.configuration_bloom.BloomConfig(vocab_size=250880,
hidden_size=64, n_layer=2,
n_head=8,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
use_cache=True,
bos_token_id=1,
eos_token_id=2, ap-
ply_residual_connection_post_layernorm=False,
hidden_dropout=0.0,
attention_dropout=0.0,
pretraining_tp=1,
slow_but_exact=False,
**kwargs)

The BLOOM model has been proposed with its various versions through the BigScience Workshop. BigScience is
inspired by other open science initiatives where researchers have pooled their time and resources to collectively achieve
a higher impact. The architecture of BLOOM is essentially similar to GPT3 (auto-regressive model for next token
prediction), but has been trained on 46 different languages and 13 programming languages. Several smaller versions
of the models have been trained on the same dataset. BLOOM is available in the following versions:

• bloom-560m

• bloom-1b1

• bloom-1b7

• bloom-3b

• bloom-7b1

• bloom (176B parameters)

Args:
vocab_size (int, optional, defaults to 250880):

Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be repre-
sented by the inputs_ids passed when calling BloomModel. Check this discussion on how the vocab_size
has been defined.

hidden_size (int, optional, defaults to 64):
Dimensionality of the embeddings and hidden states.

248 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556
https://bigscience.huggingface.co/
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-1b1
https://huggingface.co/bigscience/bloom-1b7
https://huggingface.co/bigscience/bloom-3b
https://huggingface.co/bigscience/bloom-7b1
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a

EIR

n_layer (int, optional, defaults to 2):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.

layer_norm_epsilon (float, optional, defaults to 1e-5):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

apply_residual_connection_post_layernorm (bool, optional, defaults to False):
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks

hidden_dropout (float, optional, defaults to 0.1):
Dropout rate of the dropout function on the bias dropout.

attention_dropout (float, optional, defaults to 0.1):
Dropout rate applied to the attention probs

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

pretraining_tp (int, optional, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to
this document to understand more about it. This value is necessary to ensure exact reproducibility of the
pretraining results. Please refer to this issue. Note also that this is enabled only when slow_but_exact=True.

slow_but_exact (bool, optional, defaults to False):
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
merging the TP rank tensors, due to slicing operations the results may be slightly different between the
model trained on Megatron and our model. Please refer to this issue. A solution to obtain more accurate
results is to enable this feature. Enabling this will hurt the computational time of the inference. Will be
probably resolved in the future once the main model has been fine-tuned with TP_rank=1.

2.6. API 249

https://huggingface.co/docs/transformers/parallelism
https://github.com/pytorch/pytorch/issues/76232
https://github.com/pytorch/pytorch/issues/76232

EIR

class transformers.models.camembert.configuration_camembert.CamembertConfig(vocab_size=30522,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
posi-
tion_embedding_type='absolute',
use_cache=True,
classi-
fier_dropout=None,
**kwargs)

The CamemBERT model was proposed in CamemBERT: a Tasty French Language Model by Louis Martin, Benjamin
Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah,
and Benoît Sagot. It is based on Facebook’s RoBERTa model released in 2019. It is a model trained on 138GB of
French text.

The abstract from the paper is the following:

Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available
models have either been trained on English data or on the concatenation of data in multiple languages. This makes
practical use of such models –in all languages except English– very limited. Aiming to address this issue for French,
we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the
performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech
tagging, dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the
state of the art for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster
research and downstream applications for French NLP.

Tips:

• This implementation is the same as RoBERTa. Refer to the documentation of RoBERTa for usage examples as
well as the information relative to the inputs and outputs.

This model was contributed by camembert. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling CamembertModel or TFCamembertModel.

250 Chapter 2. Documentation

https://arxiv.org/abs/1911.03894
https://huggingface.co/camembert
https://camembert-model.fr/

EIR

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling CamembertModel or TFCamembertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

2.6. API 251

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

class transformers.models.llama.configuration_llama.LlamaConfig(vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act='silu',
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs)

The Code Llama model was proposed in Code Llama: Open Foundation Models for Code by Baptiste Rozière, Jonas
Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom,
Gabriel Synnaeve.

The abstract from the paper is the following:

We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art
performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction
following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation
models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama
- Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show
improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support
infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on
several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code
Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other
publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research
and commercial use.

Check out all Code Llama models here and the officially released ones in the codellama org.

<Tip warning={true}>

The Llama2 family models, on which Code Llama is based, were trained using bfloat16, but the original inference uses
float16. Let’s look at the different precisions:

• float32: PyTorch convention on model initialization is to load models in float32, no matter with which dtype the
model weights were stored. transformers also follows this convention for consistency with PyTorch. This will
be picked by default. If you want the AutoModel API to cast the load the checkpoints with the storage weights
type, you must specify torch_dtype=”auto”, e.g. model = AutoModelForCausalLM.from_pretrained(“path”,
torch_dtype = “auto”).

• bfloat16: Code Llama was trained with this precision, so we recommend using it for further training or fine-
tuning.

252 Chapter 2. Documentation

https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/
https://huggingface.co/models?search=code_llama
https://huggingface.co/codellama

EIR

• float16: We recommend running inference using this precision, as it’s usually faster than bfloat16, and evaluation
metrics show no discernible degradation with respect to bfloat16. You can also run inference using bfloat16, and
we recommend you check inference results with both float16 and bfloat16 after fine-tuning.

As mentioned above, the dtype of the storage weights is mostly irrelevant unless you are using torch_dtype=”auto”
when initializing a model using. The reason is that the model will first be downloaded (using the dtype of the checkpoints
online) and then will be casted to the default dtype of torch (becomes torch.float32). If there is a specified torch_dtype,
it will be used instead.

</Tip>

Tips:

• These models have the same architecture as the Llama2 models

• The infilling task is supported out of the box. You should be using the tokenizer.fill_token where you want your
input to be filled.

• The model conversion script is the same as for the Llama2 family:

Here is a sample usage ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py

–input_dir /path/to/downloaded/llama/weights –model_size 7B –output_dir /output/path

``` Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the
biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load
them all in RAM).

• After conversion, the model and tokenizer can be loaded via:

>>> from transformers import LlamaForCausalLM, CodeLlamaTokenizer

>>> tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
>>> model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf")
>>> PROMPT = '''def remove_non_ascii(s: str) -> str:

""" <FILL_ME>
return result

'''
>>> input_ids = tokenizer(PROMPT, return_tensors="pt")`"input_ids"]
>>> generated_ids = model.generate(input_ids, max_new_tokens=128)

>>> filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_
→˓tokens = True)[0]
>>> print(PROMPT.replace("<FILL_ME>", filling))
def remove_non_ascii(s: str) -> str:

""" Remove non-ASCII characters from a string.

Args:
s: The string to remove non-ASCII characters from.

Returns:
The string with non-ASCII characters removed.

“”” result = “” for c in s:

if ord(c) < 128:
result += c

return result

If you only want the infilled part:

2.6. API 253



EIR

>>> from transformers import pipeline
>>> import torch

>>> generator = pipeline("text-generation",model="codellama/CodeLlama-7b-hf",torch_
→˓dtype=torch.float16, device_map="auto")
>>> generator('def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return result
→˓', max_new_tokens = 128, return_type = 1)

Under the hood, the tokenizer [automatically splits by <FILL_ME> <https://huggingface.co/docs/transformers/main/
model_doc/code_llama#transformers.CodeLlamaTokenizer.fill_token>`__ to create a formatted input string that fol-
lows the original training pattern. This is more robust than preparing the pattern yourself: it avoids pitfalls, such as
token glueing, that are very hard to debug. To see how much CPU and GPU memory you need for this model or others,
try this calculator which can help determine that value.

• The LLaMA tokenizer is a BPE model based on sentencepiece. One quirk of sentencepiece is that when decoding
a sequence, if the first token is the start of the word (e.g. “Banana”), the tokenizer does not prepend the prefix
space to the string.

This model was contributed by ArthurZucker. The original code of the authors can be found here.

Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling LlamaModel

hidden_size (int, optional, defaults to 4096):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 11008):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.

num_key_value_heads (int, optional):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048
tokens, Llama 2 up to 4096, CodeLlama up to 16384.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

rms_norm_eps (float, optional, defaults to 1e-06):
The epsilon used by the rms normalization layers.

254 Chapter 2. Documentation

https://huggingface.co/docs/transformers/main/model_doc/code_llama#transformers.CodeLlamaTokenizer.fill_token
https://huggingface.co/docs/transformers/main/model_doc/code_llama#transformers.CodeLlamaTokenizer.fill_token
https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402
https://huggingface.co/spaces/hf-accelerate/model-memory-usage
https://github.com/google/sentencepiece
https://huggingface.co/ArthurZ
https://github.com/facebookresearch/llama
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf


EIR

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

pad_token_id (int, optional):
Padding token id.

bos_token_id (int, optional, defaults to 1):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 2):
End of stream token id.

pretraining_tp (int, optional, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results.
Please refer to this issue.

tie_word_embeddings (bool, optional, defaults to False):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update
max_position_embeddings to the expected new maximum. See the following thread for more informa-
tion on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

attention_bias (bool, defaults to False, optional, defaults to False):
Whether to use a bias in the query, key, value and output projection layers during self-attention.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

>>> from transformers import LlamaModel, LlamaConfig

>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()

>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

2.6. API 255

https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism
https://github.com/pytorch/pytorch/issues/76232
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/


EIR

class transformers.models.codegen.configuration_codegen.CodeGenConfig(vocab_size=50400,
n_positions=2048,
n_ctx=2048,
n_embd=4096,
n_layer=28, n_head=16,
rotary_dim=64,
n_inner=None, activa-
tion_function='gelu_new',
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-
05,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
tie_word_embeddings=False,
**kwargs)

The CodeGen model was proposed in A Conversational Paradigm for Program Synthesis by Erik Nijkamp, Bo Pang,
Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.

CodeGen is an autoregressive language model for program synthesis trained sequentially on The Pile, BigQuery, and
BigPython.

The abstract from the paper is the following:

Program synthesis strives to generate a computer program as a solution to a given problem specification. We propose
a conversational program synthesis approach via large language models, which addresses the challenges of searching
over a vast program space and user intent specification faced in prior approaches. Our new approach casts the process
of writing a specification and program as a multi-turn conversation between a user and a system. It treats program
synthesis as a sequence prediction problem, in which the specification is expressed in natural language and the desired
program is conditionally sampled. We train a family of large language models, called CodeGen, on natural language
and programming language data. With weak supervision in the data and the scaling up of data size and model size,
conversational capacities emerge from the simple autoregressive language modeling. To study the model behavior
on conversational program synthesis, we develop a multi-turn programming benchmark (MTPB), where solving each
problem requires multi-step synthesis via multi-turn conversation between the user and the model. Our findings show
the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis
paradigm. In addition, our model CodeGen (with up to 16B parameters trained on TPU-v4) outperforms OpenAI’s
Codex on the HumanEval benchmark. We make the training library JaxFormer including checkpoints available as
open source contribution: `this https URL <https://github.com/salesforce/codegen>`__.

This model was contributed by Hiroaki Hayashi. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50400):

Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling CodeGenModel.

n_positions (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_ctx (int, optional, defaults to 2048):
This attribute is used in CodeGenModel.__init__ without any real effect.

256 Chapter 2. Documentation

https://arxiv.org/abs/2203.13474
https://pile.eleuther.ai/
https://huggingface.co/rooa
https://github.com/salesforce/codegen


EIR

n_embd (int, optional, defaults to 4096):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 28):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

rotary_dim (int, optional, defaults to 64):
Number of dimensions in the embedding that Rotary Position Embedding is applied to.

n_inner (int, optional):
Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

activation_function (str, optional, defaults to “gelu_new”):
Activation function, to be selected in the list [“relu”, “silu”, “gelu”, “tanh”, “gelu_new”].

resid_pdrop (float, optional, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (int, optional, defaults to 0.0):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.0):
The dropout ratio for the attention.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

bos_token_id (int, optional, defaults to 50256):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 50256):
End of stream token id.

tie_word_embeddings (bool, optional, defaults to False):
Whether the model’s input and output word embeddings should be tied. Note that this is only relevant if
the model has a output word embedding layer.

2.6. API 257



EIR

class transformers.models.cohere.configuration_cohere.CohereConfig(vocab_size=256000,
hidden_size=8192,
intermediate_size=22528,
logit_scale=0.0625,
num_hidden_layers=40,
num_attention_heads=64,
num_key_value_heads=None,
hidden_act='silu',
max_position_embeddings=8192,
initializer_range=0.02,
layer_norm_eps=1e-05,
use_cache=True,
pad_token_id=0,
bos_token_id=5,
eos_token_id=255001,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs)

The Cohere Command-R model was proposed in the blogpost Command-R: Retrieval Augmented Generation at Pro-
duction Scale by the Cohere Team.

The abstract from the paper is the following:

Command-R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprise.
Today, we are introducing Command-R, a new LLM aimed at large-scale production workloads. Command-R targets
the emerging “scalable” category of models that balance high efficiency with strong accuracy, enabling companies to
move beyond proof of concept, and into production.

*Command-R is a generative model optimized for long context tasks such as retrieval augmented generation (RAG)
and using external APIs and tools. It is designed to work in concert with our industry-leading Embed and Rerank
models to provide best-in-class integration for RAG applications and excel at enterprise use cases. As a model built
for companies to implement at scale, Command-R boasts: - Strong accuracy on RAG and Tool Use - Low latency, and
high throughput - Longer 128k context and lower pricing - Strong capabilities across 10 key languages - Model weights
available on HuggingFace for research and evaluation

Checkout model checkpoints here. This model was contributed by Saurabh Dash and Ahmet Üstün. The code of the
implementation in Hugging Face is based on GPT-NeoX here.

Args:
vocab_size (int, optional, defaults to 256000):

Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling CohereModel

hidden_size (int, optional, defaults to 8192):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 22528):
Dimension of the MLP representations.

logit_scale (float, optional, defaults to 0.0625):
The scaling factor for the output logits.

num_hidden_layers (int, optional, defaults to 40):
Number of hidden layers in the Transformer decoder.

258 Chapter 2. Documentation

https://txt.cohere.com/command-r/
https://txt.cohere.com/command-r/
https://huggingface.co/CohereForAI/c4ai-command-r-v01
https://huggingface.co/saurabhdash
https://huggingface.co/ahmetustun
https://github.com/EleutherAI/gpt-neox


EIR

num_attention_heads (int, optional, defaults to 64):
Number of attention heads for each attention layer in the Transformer decoder.

num_key_value_heads (int, optional):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 8192):
The maximum sequence length that this model might ever be used with.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-05):
The epsilon used by the layer normalization.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

pad_token_id (int, optional, defaults to 0):
Padding token id.

bos_token_id (int, optional, defaults to 5):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 255001):
End of stream token id.

tie_word_embeddings (bool, optional, defaults to True):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

attention_bias (bool, defaults to False, optional, defaults to False):
Whether to use a bias in the query, key, value and output projection layers during self-attention.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

>>> from transformers import CohereModel, CohereConfig

>>> # Initializing a Cohere model configuration
>>> configuration = CohereConfig()

>>> # Initializing a model from the Cohere configuration
>>> model = CohereModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

2.6. API 259

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf


EIR

class transformers.models.ctrl.configuration_ctrl.CTRLConfig(vocab_size=246534,
n_positions=256, n_embd=1280,
dff=8192, n_layer=48, n_head=16,
resid_pdrop=0.1, embd_pdrop=0.1,
layer_norm_epsilon=1e-06,
initializer_range=0.02,
use_cache=True, **kwargs)

CTRL model was proposed in CTRL: A Conditional Transformer Language Model for Controllable Generation by
Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. It’s a causal (unidi-
rectional) transformer pre-trained using language modeling on a very large corpus of ~140 GB of text data with the
first token reserved as a control code (such as Links, Books, Wikipedia etc.).

The abstract from the paper is the following:

Large-scale language models show promising text generation capabilities, but users cannot easily control particular
aspects of the generated text. We release CTRL, a 1.63 billion-parameter conditional transformer language model,
trained to condition on control codes that govern style, content, and task-specific behavior. Control codes were derived
from structure that naturally co-occurs with raw text, preserving the advantages of unsupervised learning while provid-
ing more explicit control over text generation. These codes also allow CTRL to predict which parts of the training data
are most likely given a sequence. This provides a potential method for analyzing large amounts of data via model-based
source attribution.

Tips:

• CTRL makes use of control codes to generate text: it requires generations to be started by certain words, sentences
or links to generate coherent text. Refer to the original implementation for more information.

• CTRL is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• CTRL was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the
next token in a sequence. Leveraging this feature allows CTRL to generate syntactically coherent text as it can
be observed in the run_generation.py example script.

• The PyTorch models can take the past_key_values as input, which is the previously computed key/value
attention pairs. TensorFlow models accepts past as input. Using the past_key_values value prevents
the model from re-computing pre-computed values in the context of text generation. See the ``for-
ward``(model_doc/ctrl#transformers.CTRLModel.forward) method for more information on the usage of this
argument.

This model was contributed by keskarnitishr. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 246534):

Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling CTRLModel or TFCTRLModel.

n_positions (int, optional, defaults to 256):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 1280):
Dimensionality of the embeddings and hidden states.

dff (int, optional, defaults to 8192):
Dimensionality of the inner dimension of the feed forward networks (FFN).

n_layer (int, optional, defaults to 48):
Number of hidden layers in the Transformer encoder.

260 Chapter 2. Documentation

https://arxiv.org/abs/1909.05858
https://github.com/salesforce/ctrl
https://huggingface.co/keskarnitishr
https://github.com/salesforce/ctrl


EIR

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (int, optional, defaults to 0.1):
The dropout ratio for the embeddings.

layer_norm_epsilon (float, optional, defaults to 1e-06):
The epsilon to use in the layer normalization layers

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.data2vec.configuration_data2vec_text.Data2VecTextConfig(vocab_size=30522,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
interme-
di-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
posi-
tion_embedding_type='absolute',
use_cache=True,
classi-
fier_dropout=None,
**kwargs)

This is the configuration class to store the configuration of a Data2VecTextModel and Data2VecTextModel. It
is used to instantiate a Data2VecText model according to the specified arguments, defining the model architec-
ture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecText
facebook/data2vec-text-base architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the docu-
mentation from PretrainedConfig for more information.

Args:

2.6. API 261

https://huggingface.co/facebook/data2vec-text-base


EIR

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the DATA2VEC model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling Data2VecModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling Data2VecModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

262 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.deberta.configuration_deberta.DebertaConfig(vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu', hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=0,
initializer_range=0.02,
layer_norm_eps=1e-07,
relative_attention=False,
max_relative_positions=-
1, pad_token_id=0,
posi-
tion_biased_input=True,
pos_att_type=None,
pooler_dropout=0,
pooler_hidden_act='gelu',
**kwargs)

The DeBERTa model was proposed in DeBERTa: Decoding-enhanced BERT with Disentangled Attention by
Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018
and Facebook’s RoBERTa model released in 2019.

It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.

The abstract from the paper is the following:

Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced
BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The
first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content
and position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained
on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI
by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).
The DeBERTa code and pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.

This model was contributed by DeBERTa. This model TF 2.0 implementation was contributed by kamalkraj . The
original code can be found here.

Arguments:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling DebertaModel or TFDebertaModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

2.6. API 263

https://arxiv.org/abs/2006.03654
https://huggingface.co/DeBERTa
https://huggingface.co/kamalkraj
https://github.com/microsoft/DeBERTa


EIR

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu”, “gelu”, “tanh”, “gelu_fast”, “mish”, “linear”, “sigmoid” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling DebertaModel or TFDebertaModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

relative_attention (bool, optional, defaults to False):
Whether use relative position encoding.

max_relative_positions (int, optional, defaults to 1):
The range of relative positions [-max_position_embeddings, max_position_embeddings]. Use the same
value as max_position_embeddings.

pad_token_id (int, optional, defaults to 0):
The value used to pad input_ids.

position_biased_input (bool, optional, defaults to True):
Whether add absolute position embedding to content embedding.

pos_att_type (List[str], optional):
The type of relative position attention, it can be a combination of [“p2c”, “c2p”], e.g. [“p2c”], [“p2c”,
“c2p”].

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

264 Chapter 2. Documentation



EIR

class transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2Config(vocab_size=128100,
hid-
den_size=1536,
num_hidden_layers=24,
num_attention_heads=24,
intermedi-
ate_size=6144,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=0,
initial-
izer_range=0.02,
layer_norm_eps=1e-
07,
rela-
tive_attention=False,
max_relative_positions=-
1,
pad_token_id=0,
posi-
tion_biased_input=True,
pos_att_type=None,
pooler_dropout=0,
pooler_hidden_act='gelu',
**kwargs)

The DeBERTa model was proposed in DeBERTa: Decoding-enhanced BERT with Disentangled Attention by
Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018
and Facebook’s RoBERTa model released in 2019.

It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.

The abstract from the paper is the following:

Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced
BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The
first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content
and position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained
on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI
by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).
The DeBERTa code and pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.

The following information is visible directly on the original implementation repository. DeBERTa v2 is the second
version of the DeBERTa model. It includes the 1.5B model used for the SuperGLUE single-model submission and
achieving 89.9, versus human baseline 89.8. You can find more details about this submission in the authors’ blog

New in v2:

2.6. API 265

https://arxiv.org/abs/2006.03654
https://github.com/microsoft/DeBERTa
https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/


EIR

• Vocabulary In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
Instead of a GPT2-based tokenizer, the tokenizer is now sentencepiece-based tokenizer.

• nGiE(nGram Induced Input Encoding) The DeBERTa-v2 model uses an additional convolution layer aside
with the first transformer layer to better learn the local dependency of input tokens.

• Sharing position projection matrix with content projection matrix in attention layer Based on previous
experiments, this can save parameters without affecting the performance.

• Apply bucket to encode relative positions The DeBERTa-v2 model uses log bucket to encode relative positions
similar to T5.

• 900M model & 1.5B model Two additional model sizes are available: 900M and 1.5B, which significantly
improves the performance of downstream tasks.

This model was contributed by DeBERTa. This model TF 2.0 implementation was contributed by kamalkraj. The
original code can be found here.

Arguments:
vocab_size (int, optional, defaults to 128100):

Vocabulary size of the DeBERTa-v2 model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling DebertaV2Model.

hidden_size (int, optional, defaults to 1536):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 24):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 6144):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu”, “gelu”, “tanh”, “gelu_fast”, “mish”, “linear”, “sigmoid” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 0):
The vocabulary size of the token_type_ids passed when calling DebertaModel or TFDebertaModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-7):
The epsilon used by the layer normalization layers.

relative_attention (bool, optional, defaults to True):
Whether use relative position encoding.

266 Chapter 2. Documentation

https://github.com/google/sentencepiece
https://huggingface.co/DeBERTa
https://huggingface.co/kamalkraj
https://github.com/microsoft/DeBERTa


EIR

max_relative_positions (int, optional, defaults to -1):
The range of relative positions [-max_position_embeddings, max_position_embeddings]. Use the same
value as max_position_embeddings.

pad_token_id (int, optional, defaults to 0):
The value used to pad input_ids.

position_biased_input (bool, optional, defaults to False):
Whether add absolute position embedding to content embedding.

pos_att_type (List[str], optional):
The type of relative position attention, it can be a combination of [“p2c”, “c2p”], e.g. [“p2c”], [“p2c”,
“c2p”], [“p2c”, “c2p”].

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

class transformers.models.distilbert.configuration_distilbert.DistilBertConfig(vocab_size=30522,
max_position_embeddings=512,
sinu-
soidal_pos_embds=False,
n_layers=6,
n_heads=12,
dim=768,
hid-
den_dim=3072,
dropout=0.1,
atten-
tion_dropout=0.1,
activa-
tion='gelu',
initial-
izer_range=0.02,
qa_dropout=0.1,
seq_classif_dropout=0.2,
pad_token_id=0,
**kwargs)

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing DistilBERT, a
distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less
parameters than bert-base-uncased, runs 60% faster while preserving over 95% of BERT’s performances as measured
on the GLUE language understanding benchmark.

The abstract from the paper is the following:

As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing
(NLP), operating these large models in on-the-edge and/or under constrained computational training or inference
budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language
representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks
like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models,
we leverage knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT
model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the
inductive biases learned by larger models during pretraining, we introduce a triple loss combining language modeling,
distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate
its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.

Tips:

2.6. API 267

https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5
https://arxiv.org/papers/1910.01108


EIR

• DistilBERT doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just
separate your segments with the separation token tokenizer.sep_token (or ``SEP]`).

• DistilBERT doesn’t have options to select the input positions (position_ids input). This could be added if neces-
sary though, just let us know if you need this option.

• Same as BERT but smaller. Trained by distillation of the pretrained BERT model, meaning it’s been trained to
predict the same probabilities as the larger model. The actual objective is a combination of:

– finding the same probabilities as the teacher model

– predicting the masked tokens correctly (but no next-sentence objective)

– a cosine similarity between the hidden states of the student and the teacher model

This model was contributed by [victorsanh <https://huggingface.co/victorsanh>`__. This model jax version was con-
tributed by kamalkraj. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling DistilBertModel or TFDistilBertModel.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

sinusoidal_pos_embds (boolean, optional, defaults to False):
Whether to use sinusoidal positional embeddings.

n_layers (int, optional, defaults to 6):
Number of hidden layers in the Transformer encoder.

n_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

dim (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

hidden_dim (int, optional, defaults to 3072):
The size of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

activation (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

qa_dropout (float, optional, defaults to 0.1):
The dropout probabilities used in the question answering model DistilBertForQuestionAnswering.

seq_classif_dropout (float, optional, defaults to 0.2):
The dropout probabilities used in the sequence classification and the multiple choice model
DistilBertForSequenceClassification.

268 Chapter 2. Documentation

https://huggingface.co/victorsanh
https://huggingface.co/kamalkraj
https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation


EIR

class transformers.models.electra.configuration_electra.ElectraConfig(vocab_size=30522,
embedding_size=128,
hidden_size=256,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=1024,
hidden_act='gelu', hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
summary_type='first',
sum-
mary_use_proj=True,
sum-
mary_activation='gelu',
sum-
mary_last_dropout=0.1,
pad_token_id=0, posi-
tion_embedding_type='absolute',
use_cache=True, classi-
fier_dropout=None,
**kwargs)

The ELECTRA model was proposed in the paper ELECTRA: Pre-training Text Encoders as Discriminators Rather
Than Generators. ELECTRA is a new pretraining approach which trains two transformer models: the generator and
the discriminator. The generator’s role is to replace tokens in a sequence, and is therefore trained as a masked language
model. The discriminator, which is the model we’re interested in, tries to identify which tokens were replaced by the
generator in the sequence.

The abstract from the paper is the following:

Masked language modeling (MLM) pretraining methods such as BERT corrupt the input by replacing some tokens with
`MASK] and then train a model to reconstruct the original tokens. While they produce good results when transferred
to downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we
propose a more sample-efficient pretraining task called replaced token detection. Instead of masking the input, our
approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network.
Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative
model that predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough
experiments demonstrate this new pretraining task is more efficient than MLM because the task is defined over all input
tokens rather than just the small subset that was masked out. As a result, the contextual representations learned by
our approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The
gains are particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms
GPT (trained using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also
works well at scale, where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute
and outperforms them when using the same amount of compute.

Tips:

• ELECTRA is the pretraining approach, therefore there is nearly no changes done to the underlying model: BERT.
The only change is the separation of the embedding size and the hidden size: the embedding size is generally
smaller, while the hidden size is larger. An additional projection layer (linear) is used to project the embeddings
from their embedding size to the hidden size. In the case where the embedding size is the same as the hidden

2.6. API 269

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB


EIR

size, no projection layer is used.

• ELECTRA is a transformer model pretrained with the use of another (small) masked language model. The inputs
are corrupted by that language model, which takes an input text that is randomly masked and outputs a text in
which ELECTRA has to predict which token is an original and which one has been replaced. Like for GAN
training, the small language model is trained for a few steps (but with the original texts as objective, not to fool
the ELECTRA model like in a traditional GAN setting) then the ELECTRA model is trained for a few steps.

• The ELECTRA checkpoints saved using [Google Research’s implementation <https://github.com/
google-research/electra>`__ contain both the generator and discriminator. The conversion script requires
the user to name which model to export into the correct architecture. Once converted to the HuggingFace
format, these checkpoints may be loaded into all available ELECTRA models, however. This means that the
discriminator may be loaded in the ElectraForMaskedLM model, and the generator may be loaded in the
ElectraForPreTraining model (the classification head will be randomly initialized as it doesn’t exist in the
generator).

This model was contributed by lysandre. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling ElectraModel or TFElectraModel.

embedding_size (int, optional, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.

hidden_size (int, optional, defaults to 256):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 1024):
Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling ElectraModel or TFElectraModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

270 Chapter 2. Documentation

https://github.com/google-research/electra
https://github.com/google-research/electra
https://huggingface.co/lysandre
https://github.com/google-research/electra


EIR

summary_type (str, optional, defaults to “first”):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Whether or not to add a projection after the vector extraction.

summary_activation (str, optional):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Pass “gelu” for a gelu activation to the output, any other value will result in no activation.

summary_last_dropout (float, optional, defaults to 0.0):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

The dropout ratio to be used after the projection and activation.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

2.6. API 271

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.ernie.configuration_ernie.ErnieConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
task_type_vocab_size=3,
use_task_id=False,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0, posi-
tion_embedding_type='absolute',
use_cache=True,
classifier_dropout=None,
**kwargs)

ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks, including ERNIE1.0, ERNIE2.0,
ERNIE3.0, ERNIE-Gram, ERNIE-health, etc.

These models are contributed by nghuyong and the official code can be found in PaddleNLP (in PaddlePaddle).

#Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling ErnieModel or TFErnieModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling ErnieModel or TFErnieModel.

272 Chapter 2. Documentation

https://arxiv.org/abs/1904.09223
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2010.12148
https://arxiv.org/abs/2110.07244
https://huggingface.co/nghuyong
https://github.com/PaddlePaddle/PaddleNLP


EIR

task_type_vocab_size (int, optional, defaults to 3):
The vocabulary size of the task_type_ids for ERNIE2.0/ERNIE3.0 model

use_task_id (bool, optional, defaults to False):
Whether or not the model support task_type_ids

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

pad_token_id (int, optional, defaults to 0):
Padding token id.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

class transformers.models.falcon.configuration_falcon.FalconConfig(vocab_size=65024,
hidden_size=4544,
num_hidden_layers=32,
num_attention_heads=71,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
use_cache=True,
hidden_dropout=0.0,
attention_dropout=0.0,
num_kv_heads=None,
alibi=False,
new_decoder_architecture=False,
multi_query=True,
parallel_attn=True,
bias=False,
max_position_embeddings=2048,
rope_theta=10000.0,
rope_scaling=None,
bos_token_id=11,
eos_token_id=11, **kwargs)

Falcon is a class of causal decoder-only models built by TII. The largest Falcon checkpoints have been trained on >=1T
tokens of text, with a particular emphasis on the RefinedWeb corpus. They are made available under the Apache 2.0
license.

Falcon’s architecture is modern and optimized for inference, with multi-query attention and support for efficient at-
tention variants like FlashAttention. Both ‘base’ models trained only as causal language models as well as ‘instruct’
models that have received further fine-tuning are available.

Falcon models are (as of 2023) some of the largest and most powerful open-source language models, and consistently
rank highly in the OpenLLM leaderboard.

2.6. API 273

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658
https://www.tii.ae/
https://arxiv.org/abs/2306.01116
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


EIR

Args:
vocab_size (int, optional, defaults to 65024):

Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling FalconModel

hidden_size (int, optional, defaults to 4544):
Dimension of the hidden representations.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 71):
Number of attention heads for each attention layer in the Transformer encoder.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon used by the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

use_cache (bool, optional, defaults to True):
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
config.is_decoder=True.

hidden_dropout (float, optional, defaults to 0.0):
The dropout probability for MLP layers.

attention_dropout (float, optional, defaults to 0.0):
The dropout probability for attention layers.

num_kv_heads (int, optional):
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
num_attention_heads.

alibi (bool, optional, defaults to False):
Whether to use ALiBi positional biases during self-attention.

new_decoder_architecture (bool, optional, defaults to False):
Whether to use the new (Falcon-40B) decoder architecture. If True, the multi_query and parallel_attn
arguments are ignored, as the new decoder always uses parallel attention.

multi_query (bool, optional, defaults to True):
Whether to use multi-query attention in the decoder. Ignored when new_decoder_architecture is True.

parallel_attn (bool, optional, defaults to True):
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive instead,
as in the original Transformer architecture. Ignored when new_decoder_architecture is True.

bias (bool, optional, defaults to False):
Whether to use bias on Linear layers.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with, when alibi is False. Pretrained
Falcon models with RoPE support up to 2048 tokens.

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update

274 Chapter 2. Documentation



EIR

max_position_embeddings to the expected new maximum. See the following thread for more informa-
tion on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

bos_token_id (int, optional, defaults to 11):
The id of the “beginning-of-sequence” token.

eos_token_id (int, optional, defaults to 11):
The id of the “end-of-sequence” token.

class transformers.models.flaubert.configuration_flaubert.FlaubertConfig(pre_norm=False,
layerdrop=0.0,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1, atten-
tion_dropout=0.1,
gelu_activation=True,
sinu-
soidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
em-
bed_init_std=0.02209708691207961,
layer_norm_eps=1e-
12, init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
sum-
mary_type='first',
sum-
mary_use_proj=True,
sum-
mary_activation=None,
sum-
mary_proj_to_labels=True,
sum-
mary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs)

The FlauBERT model was proposed in the paper FlauBERT: Unsupervised Language Model Pre-training for French by

2.6. API 275

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://arxiv.org/abs/1912.05372


EIR

Hang Le et al. It’s a transformer model pretrained using a masked language modeling (MLM) objective (like BERT).

The abstract from the paper is the following:

Language models have become a key step to achieve state-of-the art results in many different Natural Language Pro-
cessing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way
to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contex-
tualization at the sentence level. This has been widely demonstrated for English using contextualized representations
(Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al.,
2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French
corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean
Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, nat-
ural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other
pretraining approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream
tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further
reproducible experiments in French NLP.

This model was contributed by formiel. The original code can be found here.

Tips: - Like RoBERTa, without the sentence ordering prediction (so just trained on the MLM objective).

Args:
pre_norm (bool, optional, defaults to False):

Whether to apply the layer normalization before or after the feed forward layer following the attention in
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)

layerdrop (float, optional, defaults to 0.0):
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Struc-
tured Dropout. ICLR 2020)

vocab_size (int, optional, defaults to 30145):
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling FlaubertModel or TFFlaubertModel.

emb_dim (int, optional, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.

n_layer (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.1):
The dropout probability for the attention mechanism

gelu_activation (bool, optional, defaults to True):
Whether or not to use a gelu activation instead of relu.

sinusoidal_embeddings (bool, optional, defaults to False):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.

causal (bool, optional, defaults to False):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask
in order to only attend to the left-side context instead if a bidirectional context.

276 Chapter 2. Documentation

https://huggingface.co/formiel
https://github.com/getalp/Flaubert


EIR

asm (bool, optional, defaults to False):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.

n_langs (int, optional, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.

use_lang_emb (bool, optional, defaults to True)
Whether to use language embeddings. Some models use additional language embeddings, see the multi-
lingual models page for information on how to use them.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

embed_init_std (float, optional, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.

init_std (int, optional, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

bos_index (int, optional, defaults to 0):
The index of the beginning of sentence token in the vocabulary.

eos_index (int, optional, defaults to 1):
The index of the end of sentence token in the vocabulary.

pad_index (int, optional, defaults to 2):
The index of the padding token in the vocabulary.

unk_index (int, optional, defaults to 3):
The index of the unknown token in the vocabulary.

mask_index (int, optional, defaults to 5):
The index of the masking token in the vocabulary.

is_encoder(bool, optional, defaults to True):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.

summary_type (string, optional, defaults to “first”):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Whether or not to add a projection after the vector extraction.

2.6. API 277

http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings
http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings


EIR

summary_activation (str, optional):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Pass “tanh” for a tanh activation to the output, any other value will result in no activation.

summary_proj_to_labels (bool, optional, defaults to True):
Used in the sequence classification and multiple choice models.

Whether the projection outputs should have config.num_labels or config.hidden_size classes.

summary_first_dropout (float, optional, defaults to 0.1):
Used in the sequence classification and multiple choice models.

The dropout ratio to be used after the projection and activation.

start_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

end_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

mask_token_id (int, optional, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.

lang_id (int, optional, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.

class transformers.models.fnet.configuration_fnet.FNetConfig(vocab_size=32000,
hidden_size=768,
num_hidden_layers=12,
intermediate_size=3072,
hidden_act='gelu_new',
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=4,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_tpu_fourier_optimizations=False,
tpu_short_seq_length=512,
pad_token_id=3, bos_token_id=1,
eos_token_id=2, **kwargs)

The FNet model was proposed in FNet: Mixing Tokens with Fourier Transforms by James Lee-Thorp, Joshua Ainslie,
Ilya Eckstein, Santiago Ontanon. The model replaces the self-attention layer in a BERT model with a fourier transform
which returns only the real parts of the transform. The model is significantly faster than the BERT model because it has
fewer parameters and is more memory efficient. The model achieves about 92-97% accuracy of BERT counterparts on
GLUE benchmark, and trains much faster than the BERT model. The abstract from the paper is the following:

We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the self-
attention sublayers with simple linear transformations that “mix” input tokens. These linear mixers, along with stan-
dard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text classi-
fication tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder with a
standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE
benchmark, but trains 80% faster on GPUs and 70% faster on TPUs at standard 512 input lengths. At longer input
lengths, our FNet model is significantly faster: when compared to the “efficient” Transformers on the Long Range
Arena benchmark, FNet matches the accuracy of the most accurate models, while outpacing the fastest models across
all sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory
footprint and is particularly efficient at smaller model sizes; for a fixed speed and accuracy budget, small FNet models
outperform Transformer counterparts.

278 Chapter 2. Documentation

https://arxiv.org/abs/2105.03824


EIR

Tips on usage:

• The model was trained without an attention mask as it is based on Fourier Transform. The model was trained
with maximum sequence length 512 which includes pad tokens. Hence, it is highly recommended to use the
same maximum sequence length for fine-tuning and inference.

This model was contributed by gchhablani. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling FNetModel or TFFNetModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu_new”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 4):
The vocabulary size of the token_type_ids passed when calling FNetModel or TFFNetModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

use_tpu_fourier_optimizations (bool, optional, defaults to False):
Determines whether to use TPU optimized FFTs. If True, the model will favor axis-wise FFTs transforms.
Set to False for GPU/CPU hardware, in which case n-dimensional FFTs are used.

tpu_short_seq_length (int, optional, defaults to 512):
The sequence length that is expected by the model when using TPUs. This will be used to initialize the
DFT matrix only when use_tpu_fourier_optimizations is set to True and the input sequence is shorter than
or equal to 4096 tokens.

2.6. API 279

https://huggingface.co/gchhablani
https://github.com/google-research/google-research/tree/master/f_net


EIR

class transformers.models.gemma.configuration_gemma.GemmaConfig(vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act='gelu_pytorch_tanh',
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs)

The Gemma model was proposed in Gemma: Open Models Based on Gemini Technology and Research by Gemma
Team, Google. Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.

The abstract from the paper is the following:

This work introduces Gemma, a new family of open language models demonstrating strong performance across aca-
demic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7
billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open
models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects
of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs
is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations

Tips:

• The original checkpoints can be converted using the conversion script
src/transformers/models/gemma/convert_gemma_weights_to_hf.py

This model was contributed by Arthur Zucker, Younes Belkada, Sanchit Gandhi, Pedro Cuenca.

Args:
vocab_size (int, optional, defaults to 256000):

Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling GemmaModel

hidden_size (int, optional, defaults to 3072):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 24576):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 28):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

280 Chapter 2. Documentation

https://blog.google/technology/developers/gemma-open-models/
https://huggingface.co/ArthurZ
https://huggingface.co/ybelkada
https://huggingface.co/sanchit-gandhi
https://huggingface.co/pcuenq


EIR

num_key_value_heads (int, optional, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

head_dim (int, optional, defaults to 256):
The attention head dimension.

hidden_act (str or function, optional, defaults to “gelu_pytorch_tanh”):
The legacy activation function. It is overwritten by the hidden_activation.

hidden_activation (str or function, optional):
The non-linear activation function (function or string) in the decoder. Will default to “gelu_pytorch_tanh”
if not specified. “gelu_pytorch_tanh” uses an approximation of the “gelu” activation function.

max_position_embeddings (int, optional, defaults to 8192):
The maximum sequence length that this model might ever be used with.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

rms_norm_eps (float, optional, defaults to 1e-06):
The epsilon used by the rms normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

pad_token_id (int, optional, defaults to 0):
Padding token id.

eos_token_id (int, optional, defaults to 1):
End of stream token id.

bos_token_id (int, optional, defaults to 2):
Beginning of stream token id.

tie_word_embeddings (bool, optional, defaults to True):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

attention_bias (bool, defaults to False, optional, defaults to False):
Whether to use a bias in the query, key, value and output projection layers during self-attention.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

>>> from transformers import GemmaModel, GemmaConfig

>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()

>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)

2.6. API 281

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf


EIR

>>> # Accessing the model configuration
>>> configuration = model.config

class transformers.models.git.configuration_git.GitConfig(vision_config=None, vocab_size=30522,
hidden_size=768,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type='absolute',
use_cache=True,
tie_word_embeddings=False,
bos_token_id=101, eos_token_id=102,
num_image_with_embedding=None,
**kwargs)

The GIT model was proposed in GIT: A Generative Image-to-text Transformer for Vision and Language by Jianfeng
Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. GIT is a
decoder-only Transformer that leverages CLIP’s vision encoder to condition the model on vision inputs besides text.
The model obtains state-of-the-art results on image captioning and visual question answering benchmarks.

The abstract from the paper is the following:

In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify vision-language tasks such
as image/video captioning and question answering. While generative models provide a consistent network architec-
ture between pre-training and fine-tuning, existing work typically contains complex structures (uni/multi-modal en-
coder/decoder) and depends on external modules such as object detectors/taggers and optical character recognition
(OCR). In GIT, we simplify the architecture as one image encoder and one text decoder under a single language model-
ing task. We also scale up the pre-training data and the model size to boost the model performance. Without bells and
whistles, our GIT establishes new state of the arts on 12 challenging benchmarks with a large margin. For instance,
our model surpasses the human performance for the first time on TextCaps (138.2 vs. 125.5 in CIDEr). Further-
more, we present a new scheme of generation-based image classification and scene text recognition, achieving decent
performance on standard benchmarks.

Tips:

• GIT is implemented in a very similar way to GPT-2, the only difference being that the model is also conditioned
on pixel_values.

• One can use GitProcessor to prepare images for the model, and the generate method for autoregressive gen-
eration.

<img src=”https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_
doc/git_architecture.jpg” alt=”drawing” width=”600”/>

<small> GIT architecture. Taken from the <a href=”https://arxiv.org/abs/2205.14100” target=”_blank”>original pa-
per</a>. </small>

This model was contributed by nielsr. The original code can be found here.

Args:

282 Chapter 2. Documentation

https://arxiv.org/abs/2205.14100
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg
https://arxiv.org/abs/2205.14100
https://huggingface.co/nielsr
https://github.com/microsoft/GenerativeImage2Text


EIR

vision_config (dict, optional):
Dictionary of configuration options used to initialize GitVisionConfig.

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling GitModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 6):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

num_image_with_embedding (int, optional):
The number of temporal embeddings to add, in case the model is used for video captioning/VQA.

2.6. API 283

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.gpt2.configuration_gpt2.GPT2Config(vocab_size=50257,
n_positions=1024, n_embd=768,
n_layer=12, n_head=12,
n_inner=None,
activation_function='gelu_new',
resid_pdrop=0.1, embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
summary_type='cls_index',
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
**kwargs)

The GPT-Sw3 model was first proposed in Lessons Learned from GPT-SW3: Building the First Large-Scale Generative
Language Model for Swedish by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine
Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.

Since that first paper the authors have extended their work and trained new models on their new 1.2TB corpora named
The Nordic Pile.

GPT-Sw3 is a collection of large decoder-only pretrained transformer language models that were developed by AI
Sweden in collaboration with RISE and the WASP WARA for Media and Language. GPT-Sw3 has been trained on a
dataset containing 320B tokens in Swedish, Norwegian, Danish, Icelandic, English, and programming code. The model
was pretrained using a causal language modeling (CLM) objective utilizing the NeMo Megatron GPT implementation.

This model was contributed by AI Sweden.

The implementation uses the GPT2Model coupled with our GPTSw3Tokenizer. This means that AutoTokenizer and
AutoModelForCausalLM map to our tokenizer implementation and the corresponding GPT2 model implementation
respectively. Note that sentencepiece is required to use our tokenizer and can be installed with: pip install transform-
ers[sentencepiece] or pip install sentencepiece

284 Chapter 2. Documentation

http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf
http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf
https://huggingface.co/AI-Sweden
https://huggingface.co/docs/transformers/model_doc/gpt2


EIR

class transformers.models.gpt2.configuration_gpt2.GPT2Config(vocab_size=50257,
n_positions=1024, n_embd=768,
n_layer=12, n_head=12,
n_inner=None,
activation_function='gelu_new',
resid_pdrop=0.1, embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
summary_type='cls_index',
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
**kwargs)

OpenAI GPT-2 model was proposed in Language Models are Unsupervised Multitask Learners by Alec Radford, Jef-
frey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever from OpenAI. It’s a causal (unidirectional)
transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.

The abstract from the paper is the following:

GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset`1] of 8 million
web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more
than 10X the amount of data.

Tips:

• GPT-2 is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the
next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can
be observed in the run_generation.py example script.

• The model can take the past_key_values (for PyTorch) or past (for TF) as input, which is the previously computed
key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing
pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the
GPT2Model.forward method, or for TF the past argument of the TFGPT2Model.call method for more in-
formation on its usage.

• Enabling the scale_attn_by_inverse_layer_idx and reorder_and_upcast_attn flags will apply the training stability
improvements from [Mistral <https://github.com/stanford-crfm/mistral/>`__ (for PyTorch only).

Write With Transformer is a webapp created and hosted by Hugging Face showcasing the generative capabilities of
several models. GPT-2 is one of them and is available in five different sizes: small, medium, large, xl and a distilled
version of the small checkpoint: distilgpt-2.

This model was contributed by thomwolf. The original code can be found here.

Args:

2.6. API 285

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://huggingface.co/openai
https://github.com/stanford-crfm/mistral/
https://transformer.huggingface.co/doc/gpt2-large
https://huggingface.co/thomwolf
https://openai.com/blog/better-language-models/


EIR

vocab_size (int, optional, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling GPT2Model or TFGPT2Model.

n_positions (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 768):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

n_inner (int, optional):
Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

activation_function (str, optional, defaults to “gelu_new”):
Activation function, to be selected in the list [“relu”, “silu”, “gelu”, “tanh”, “gelu_new”].

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the attention.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

summary_type (string, optional, defaults to “cls_index”):
Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and
TFGPT2DoubleHeadsModel.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and
TFGPT2DoubleHeadsModel.

Whether or not to add a projection after the vector extraction.

summary_activation (str, optional):
Argument used when doing sequence summary. Used in for the multiple choice head in
GPT2DoubleHeadsModel.

Pass “tanh” for a tanh activation to the output, any other value will result in no activation.

286 Chapter 2. Documentation



EIR

summary_proj_to_labels (bool, optional, defaults to True):
Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and
TFGPT2DoubleHeadsModel.

Whether the projection outputs should have config.num_labels or config.hidden_size classes.

summary_first_dropout (float, optional, defaults to 0.1):
Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and
TFGPT2DoubleHeadsModel.

The dropout ratio to be used after the projection and activation.

scale_attn_weights (bool, optional, defaults to True):
Scale attention weights by dividing by sqrt(hidden_size)..

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

bos_token_id (int, optional, defaults to 50256):
Id of the beginning of sentence token in the vocabulary.

eos_token_id (int, optional, defaults to 50256):
Id of the end of sentence token in the vocabulary.

scale_attn_by_inverse_layer_idx (bool, optional, defaults to False):
Whether to additionally scale attention weights by 1 / layer_idx + 1.

reorder_and_upcast_attn (bool, optional, defaults to False):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-
product/softmax to float() when training with mixed precision.

class transformers.models.gpt_bigcode.configuration_gpt_bigcode.GPTBigCodeConfig(vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activa-
tion_function='gelu_pytorch_tanh',
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-
05,
initial-
izer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
atten-
tion_softmax_in_fp32=True,
scale_attention_softmax_in_fp32=True,
multi_query=True,
**kwargs)

The GPTBigCode model was proposed in SantaCoder: don’t reach for the stars! by BigCode. The listed authors are:
Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas
Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian

2.6. API 287

https://arxiv.org/abs/2301.03988


EIR

Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian
Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.

The abstract from the paper is the following:uery

The BigCode project is an open-scientific collaboration working on the responsible development of large language
models for code. This tech report describes the progress of the collaboration until December 2022, outlining the
current state of the Personally Identifiable Information (PII) redaction pipeline, the experiments conducted to de-risk
the model architecture, and the experiments investigating better preprocessing methods for the training data. We train
1.1B parameter models on the Java, JavaScript, and Python subsets of The Stack and evaluate them on the MultiPL-
E text-to-code benchmark. We find that more aggressive filtering of near-duplicates can further boost performance
and, surprisingly, that selecting files from repositories with 5+ GitHub stars deteriorates performance significantly.
Our best model outperforms previous open-source multilingual code generation models (InCoder-6.7B and CodeGen-
Multi-2.7B) in both left-to-right generation and infilling on the Java, JavaScript, and Python portions of MultiPL-E,
despite being a substantially smaller model. All models are released under an OpenRAIL license at `this https URL.
<https://huggingface.co/bigcode>`__

The model is a an optimized GPT2 model with support for Multi-Query Attention.

Args:
vocab_size (int, optional, defaults to 50257):

Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling GPTBigCodeModel.

n_positions (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 768):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

n_inner (int, optional, defaults to None):
Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

activation_function (str, optional, defaults to “gelu_pytorch_tanh”):
Activation function, to be selected in the list [“relu”, “silu”, “gelu”, “tanh”, “gelu_new”,
“gelu_pytorch_tanh”].

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the attention.

layer_norm_epsilon (float, optional, defaults to 1e-5):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

288 Chapter 2. Documentation

https://huggingface.co/docs/transformers/model_doc/gpt2


EIR

scale_attn_weights (bool, optional, defaults to True):
Scale attention weights by dividing by sqrt(hidden_size)..

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

attention_softmax_in_fp32 (bool, optional, defaults to True):
Whether to call the fused softmax in float32.

scale_attention_softmax_in_fp32 (bool, optional, defaults to True):
Whether to scale the attention softmax in float32.

attention_type (bool, optional, defaults to True):
Whether to use Multi-Query Attion (True) or Multi-Head Attention (False).

class transformers.models.gpt_neox.configuration_gpt_neox.GPTNeoXConfig(vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermedi-
ate_size=24576,
hidden_act='gelu',
rotary_pct=0.25, ro-
tary_emb_base=10000,
atten-
tion_dropout=0.0,
hidden_dropout=0.0,
classi-
fier_dropout=0.1,
max_position_embeddings=2048,
initial-
izer_range=0.02,
layer_norm_eps=1e-
05, use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs)

We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights
will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge,
the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we
describe GPT-NeoX-20B’s architecture and training and evaluate its performance on a range of language-understanding,
mathematics, and knowledge-based tasks. We find that GPT-NeoX-20B is a particularly powerful few-shot reasoner
and gains far more in performance when evaluated five-shot than similarly sized GPT-3 and FairSeq models. We open-
source the training and evaluation code, as well as the model weights, at https://github.com/EleutherAI/gpt-neox.

Development of the model was led by Sid Black, Stella Biderman and Eric Hallahan, and the model was trained with
generous the support of CoreWeave.

GPT-NeoX-20B was trained with fp16, thus it is recommended to initialize the model as follows:

model = GPTNeoXForCausalLM.from_pretrained(“EleutherAI/gpt-neox-20b”).half().cuda()

GPT-NeoX-20B also has a different tokenizer from the one used in GPT-J-6B and GPT-Neo. The new tokenizer allo-
cates additional tokens to whitespace characters, making the model more suitable for certain tasks like code generation.

2.6. API 289

https://github.com/EleutherAI/gpt-neox
https://www.coreweave.com/


EIR

#Args:
vocab_size (int, optional, defaults to 50432):

Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling GPTNeoXModel.

hidden_size (int, optional, defaults to 6144):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 44):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 24576):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

rotary_pct (float, optional, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings

rotary_emb_base (int, optional, defaults to 10000)
base for computing rotary embeddings frequency

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio probability of the attention score.

hidden_dropout (float, optional, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.

classifier_dropout (float, optional, defaults to 0.1):
Argument used when doing token classification, used in the model GPTNeoXForTokenClassification.

The dropout ratio for the hidden layer.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

initializer_range (float, optional, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

use_parallel_residual (bool, optional, defaults to True):
Whether to use a “parallel” formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update

290 Chapter 2. Documentation



EIR

max_position_embeddings to the expected new maximum. See the following thread for more informa-
tion on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

attention_bias (bool, optional, defaults to True):
Whether to use a bias in the query, key, value and output projection layers during self-attention.

class transformers.models.gpt_neox_japanese.configuration_gpt_neox_japanese.GPTNeoXJapaneseConfig(vocab_size=32000,
hid-
den_size=2560,
num_hidden_layers=32,
num_attention_heads=32,
in-
ter-
me-
di-
ate_multiple_size=4,
hid-
den_act='gelu',
ro-
tary_pct=1.0,
ro-
tary_emb_base=10000,
max_position_embeddings=2048,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
05,
use_cache=True,
bos_token_id=31996,
eos_token_id=31999,
at-
ten-
tion_dropout=0.1,
hid-
den_dropout=0.0,
**kwargs)

We introduce GPT-NeoX-Japanese, which is an autoregressive language model for Japanese, trained on top of https:
//github.com/EleutherAI/gpt-neox. Japanese is a unique language with its large vocabulary and a combination of
hiragana, katakana, and kanji writing scripts. To address this distinct structure of the Japanese language, we use a
special sub-word tokenizer. We are very grateful to tanreinama for open-sourcing this incredibly helpful tokenizer.
Following the recommendations from Google’s research on PaLM, we have removed bias parameters from transformer
blocks, achieving better model performance. Please refer this article in detail.

Development of the model was led by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori from ABEJA,
Inc.. For more information on this model-building activity, please refer here (ja).

#Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be
represented by the inputs_ids passed when calling GPTNeoXJapanese.

hidden_size (int, optional, defaults to 2560):

2.6. API 291

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://github.com/EleutherAI/gpt-neox
https://github.com/EleutherAI/gpt-neox
https://github.com/tanreinama/Japanese-BPEEncoder_V2
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://medium.com/ml-abeja/training-a-better-gpt-2-93b157662ae4
https://github.com/SO0529
https://github.com/spider-man-tm
https://github.com/Anuj040
https://github.com/go5paopao
https://www.abejainc.com/
https://www.abejainc.com/
https://tech-blog.abeja.asia/entry/abeja-gpt-project-202207


EIR

Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_multiple_size (int, optional, defaults to 4):
Dimension of the “intermediate” layer in the Transformer encoder is calculated by hidden_size * interme-
diate_multiple_size.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler.

rotary_pct (float, optional, defaults to 1.00):
percentage of hidden dimensions to allocate to rotary embeddings

rotary_emb_base (int, optional, defaults to 10000)
base for computing rotary embeddings frequency

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-5):
The epsilon used by the layer normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention.

hidden_dropout (float, optional, defaults to 0.0):
The dropout ratio for the hidden layer.

class transformers.models.gptj.configuration_gptj.GPTJConfig(vocab_size=50400,
n_positions=2048, n_embd=4096,
n_layer=28, n_head=16,
rotary_dim=64, n_inner=None,
activation_function='gelu_new',
resid_pdrop=0.0, embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
tie_word_embeddings=False,
**kwargs)

The GPT-J model was released in the kingoflolz/mesh-transformer-jax repository by Ben Wang and Aran Komatsuzaki.
It is a GPT-2-like causal language model trained on the Pile dataset.

This model was contributed by Stella Biderman.

Tips:

292 Chapter 2. Documentation

https://github.com/kingoflolz/mesh-transformer-jax
https://pile.eleuther.ai/
https://huggingface.co/stellaathena


EIR

• To load GPT-J in float32 one would need at least 2x model size RAM: 1x for initial weights and another 1x to
load the checkpoint. So for GPT-J it would take at least 48GB RAM to just load the model. To reduce the RAM
usage there are a few options. The torch_dtype argument can be used to initialize the model in half-precision on
a CUDA device only. There is also a fp16 branch which stores the fp16 weights, which could be used to further
minimize the RAM usage:

>>> from transformers import GPTJForCausalLM
>>> import torch

>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained(
... "EleutherAI/gpt-j-6B",
... revision="float16",
... torch_dtype=torch.float16,
... ).to(device)

• The model should fit on 16GB GPU for inference. For training/fine-tuning it would take much more GPU RAM.
Adam optimizer for example makes four copies of the model: model, gradients, average and squared average
of the gradients. So it would need at least 4x model size GPU memory, even with mixed precision as gradient
updates are in fp32. This is not including the activations and data batches, which would again require some more
GPU RAM. So one should explore solutions such as DeepSpeed, to train/fine-tune the model. Another option
is to use the original codebase to train/fine-tune the model on TPU and then convert the model to Transformers
format for inference. Instructions for that could be found here

• Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer. These
extra tokens are added for the sake of efficiency on TPUs. To avoid the mismatch between embedding matrix
size and vocab size, the tokenizer for GPT-J contains 143 extra tokens <|extratoken_1|>. . . <|extratoken_143|>,
so the vocab_size of tokenizer also becomes 50400.

#Args:
vocab_size (int, optional, defaults to 50400):

Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling GPTJModel.

n_positions (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 4096):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 28):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

rotary_dim (int, optional, defaults to 64):
Number of dimensions in the embedding that Rotary Position Embedding is applied to.

n_inner (int, optional, defaults to None):
Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

activation_function (str, optional, defaults to “gelu_new”):
Activation function, to be selected in the list [“relu”, “silu”, “gelu”, “tanh”, “gelu_new”].

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

2.6. API 293

https://huggingface.co/EleutherAI/gpt-j-6B
https://github.com/kingoflolz/mesh-transformer-jax/blob/master/howto_finetune.md
https://huggingface.co/EleutherAI/gpt-j-6B


EIR

embd_pdrop (int, optional, defaults to 0.1):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the attention.

layer_norm_epsilon (float, optional, defaults to 1e-5):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.ibert.configuration_ibert.IBertConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2, posi-
tion_embedding_type='absolute',
quant_mode=False,
force_dequant='none',
**kwargs)

The I-BERT model was proposed in I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei
Yao, Michael W. Mahoney and Kurt Keutzer. It’s a quantized version of RoBERTa running inference up to four times
faster.

The abstract from the paper is the following:

Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language
Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive for effi-
cient inference at the edge, and even at the data center. While quantization can be a viable solution for this, previous
work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot efficiently
utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM processors. In
this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes the entire infer-
ence with integer-only arithmetic. Based on lightweight integer-only approximation methods for nonlinear operations,
e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT inference without
any floating point calculation. We evaluate our approach on GLUE downstream tasks using RoBERTa-Base/Large.
We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to the full-precision
baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4 - 4.0x for INT8 inference
on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has been
open-sourced.

This model was contributed by kssteven. The original code can be found here.

Args:

294 Chapter 2. Documentation

https://arxiv.org/abs/2101.01321
https://huggingface.co/kssteven
https://github.com/kssteven418/I-BERT


EIR

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the I-BERT model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling IBertModel

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling IBertModel

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

quant_mode (bool, optional, defaults to False):
Whether to quantize the model or not.

force_dequant (str, optional, defaults to “none”):
Force dequantize specific nonlinear layer. Dequatized layers are then executed with full precision. “none”,
“gelu”, “softmax”, “layernorm” and “nonlinear” are supported. As deafult, it is set as “none”, which
does not dequantize any layers. Please specify “gelu”, “softmax”, or “layernorm” to dequantize GELU,
Softmax, or LayerNorm, respectively. “nonlinear” will dequantize all nonlinear layers, i.e., GELU, Soft-
max, and LayerNorm.

2.6. API 295

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.imagegpt.configuration_imagegpt.ImageGPTConfig(vocab_size=513,
n_positions=1024,
n_embd=512,
n_layer=24,
n_head=8,
n_inner=None,
activa-
tion_function='quick_gelu',
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-
05,
initial-
izer_range=0.02,
scale_attn_weights=True,
use_cache=True,
tie_word_embeddings=False,
scale_attn_by_inverse_layer_idx=False,
re-
order_and_upcast_attn=False,
**kwargs)

The ImageGPT model was proposed in Generative Pretraining from Pixels by Mark Chen, Alec Radford, Rewon Child,
Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. ImageGPT (iGPT) is a GPT-2-like model trained to predict the
next pixel value, allowing for both unconditional and conditional image generation.

The abstract from the paper is the following:

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models
can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels,
without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels,
we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and
low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised
Wide ResNet, and 99.0% accuracy with full fine-tuning, matching the top supervised pre-trained models. We are also
competitive with self-supervised benchmarks on ImageNet when substituting pixels for a VQVAE encoding, achieving
69.0% top-1 accuracy on a linear probe of our features.

<img src=”https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/imagegpt_architecture.
png” alt=”drawing” width=”600”/>

<small> Summary of the approach. Taken from the original paper. </small>

This model was contributed by nielsr, based on this issue. The original code can be found here.

Tips:

• ImageGPT is almost exactly the same as GPT-2, with the exception that a different activation function is used
(namely “quick gelu”), and the layer normalization layers don’t mean center the inputs. ImageGPT also doesn’t
have tied input- and output embeddings.

• As the time- and memory requirements of the attention mechanism of Transformers scales quadratically in the
sequence length, the authors pre-trained ImageGPT on smaller input resolutions, such as 32x32 and 64x64.
However, feeding a sequence of 32x32x3=3072 tokens from 0..255 into a Transformer is still prohibitively
large. Therefore, the authors applied k-means clustering to the (R,G,B) pixel values with k=512. This way,
we only have a 32*32 = 1024-long sequence, but now of integers in the range 0..511. So we are shrinking the
sequence length at the cost of a bigger embedding matrix. In other words, the vocabulary size of ImageGPT is

296 Chapter 2. Documentation

https://openai.com/blog/image-gpt
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/imagegpt_architecture.png
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/imagegpt_architecture.png
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://huggingface.co/nielsr
https://github.com/openai/image-gpt/issues/7
https://github.com/openai/image-gpt


EIR

512, + 1 for a special “start of sentence” (SOS) token, used at the beginning of every sequence. One can use
ImageGPTImageProcessor to prepare images for the model.

• Despite being pre-trained entirely unsupervised (i.e. without the use of any labels), ImageGPT produces fairly
performant image features useful for downstream tasks, such as image classification. The authors showed that the
features in the middle of the network are the most performant, and can be used as-is to train a linear model (such
as a sklearn logistic regression model for example). This is also referred to as “linear probing”. Features can
be easily obtained by first forwarding the image through the model, then specifying output_hidden_states=True,
and then average-pool the hidden states at whatever layer you like.

• Alternatively, one can further fine-tune the entire model on a downstream dataset, similar to BERT. For this, you
can use ImageGPTForImageClassification.

• ImageGPT comes in different sizes: there’s ImageGPT-small, ImageGPT-medium and ImageGPT-large. The
authors did also train an XL variant, which they didn’t release. The differences in size are summarized in the
following table:

Model variant | Depths | Hidden sizes | Decoder hidden size | Params (M) | ImageNet-1k Top 1 |

|---|—|---|—|---|—| | MiT-b0 | [2, 2, 2, 2] | [32, 64, 160, 256] | 256 | 3.7 | 70.5 | | MiT-b1 | [2, 2, 2, 2] | [64, 128, 320,
512] | 256 | 14.0 | 78.7 | | MiT-b2 | [3, 4, 6, 3] | [64, 128, 320, 512] | 768 | 25.4 | 81.6 | | MiT-b3 | [3, 4, 18, 3] | [64, 128,
320, 512] | 768 | 45.2 | 83.1 | | MiT-b4 | [3, 8, 27, 3] | [64, 128, 320, 512] | 768 | 62.6 | 83.6 | | MiT-b5 | [3, 6, 40, 3] |
[64, 128, 320, 512] | 768 | 82.0 | 83.8 |

Args:
vocab_size (int, optional, defaults to 512):

Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling ImageGPTModel or TFImageGPTModel.

n_positions (int, optional, defaults to 32*32):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 512):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.

n_inner (int, optional, defaults to None):
Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

activation_function (str, optional, defaults to “quick_gelu”):
Activation function (can be one of the activation functions defined in src/transformers/activations.py). De-
faults to “quick_gelu”.

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (int, optional, defaults to 0.1):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the attention.

2.6. API 297



EIR

layer_norm_epsilon (float, optional, defaults to 1e-5):
The epsilon to use in the layer normalization layers.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

scale_attn_weights (bool, optional, defaults to True):
Scale attention weights by dividing by sqrt(hidden_size)..

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

scale_attn_by_inverse_layer_idx (bool, optional, defaults to False):
Whether to additionally scale attention weights by 1 / layer_idx + 1.

reorder_and_upcast_attn (bool, optional, defaults to False):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-
product/softmax to float() when training with mixed precision.

class transformers.models.layoutlm.configuration_layoutlm.LayoutLMConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hidden_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, pad_token_id=0,
posi-
tion_embedding_type='absolute',
use_cache=True,
max_2d_position_embeddings=1024,
**kwargs)

The LayoutLM model was proposed in the paper LayoutLM: Pre-training of Text and Layout for Document Image
Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. It’s a simple but
effective pretraining method of text and layout for document image understanding and information extraction tasks,
such as form understanding and receipt understanding. It obtains state-of-the-art results on several downstream tasks:

• form understanding: the FUNSD dataset (a collection of 199 annotated forms comprising more than 30,000
words).

• receipt understanding: the SROIE dataset (a collection of 626 receipts for training and 347 receipts for testing).

• document image classification: the RVL-CDIP dataset (a collection of 400,000 images belonging to one of 16
classes).

The abstract from the paper is the following:

Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread
use of pretraining models for NLP applications, they almost exclusively focus on text-level manipulation, while neglect-
ing layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM

298 Chapter 2. Documentation

https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/1912.13318
https://guillaumejaume.github.io/FUNSD/
https://rrc.cvc.uab.es/?ch=13
https://www.cs.cmu.edu/~aharley/rvl-cdip/


EIR

to jointly model interactions between text and layout information across scanned document images, which is beneficial
for a great number of real-world document image understanding tasks such as information extraction from scanned
documents. Furthermore, we also leverage image features to incorporate words’ visual information into LayoutLM.
To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for
document-level pretraining. It achieves new state-of-the-art results in several downstream tasks, including form under-
standing (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from
93.07 to 94.42).

Tips:

• In addition to input_ids, ~transformers.LayoutLMModel.forward also expects the input bbox, which are
the bounding boxes (i.e. 2D-positions) of the input tokens. These can be obtained using an external OCR engine
such as Google’s Tesseract (there’s a Python wrapper available). Each bounding box should be in (x0, y0, x1,
y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1)
represents the position of the lower right corner. Note that one first needs to normalize the bounding boxes to be
on a 0-1000 scale. To normalize, you can use the following function:

def normalize_bbox(bbox, width, height):
return `

int(1000 * (bbox[0] / width)), int(1000 * (bbox[1] / height)), int(1000 * (bbox[2] / width)), int(1000 *
(bbox[3] / height)),

]

Here, width and height correspond to the width and height of the original document in which the token occurs. Those
can be obtained using the Python Image Library (PIL) library for example, as follows:

from PIL import Image

# Document can be a png, jpg, etc. PDFs must be converted to images. image = Im-
age.open(name_of_your_document).convert(“RGB”)

width, height = image.size

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the in-
puts_ids passed to the forward method of LayoutLMModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

2.6. API 299

https://github.com/tesseract-ocr/tesseract
https://pypi.org/project/pytesseract/


EIR

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed into LayoutLMModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

pad_token_id (int, optional, defaults to 0):
The value used to pad input_ids.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to [Self-Attention
with Relative Position Representations (Shaw et al.) <https://arxiv.org/abs/1803.02155>`__. For more in-
formation on “relative_key_query”, please refer to Method 4 in Improve Transformer Models with Better
Relative Position Embeddings (Huang et al.).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

max_2d_position_embeddings (int, optional, defaults to 1024):
The maximum value that the 2D position embedding might ever used. Typically set this to something large
just in case (e.g., 1024).

class transformers.models.led.configuration_led.LEDConfig(vocab_size=50265,
max_encoder_position_embeddings=16384,
max_decoder_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function='gelu',
d_model=1024, dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0, init_std=0.02,
decoder_start_token_id=2,
classifier_dropout=0.0,
pad_token_id=1, bos_token_id=0,
eos_token_id=2, attention_window:
List[int] | int = 512, **kwargs)

The LED model was proposed in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters,
Arman Cohan.

The abstract from the paper is the following:

300 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658
https://arxiv.org/abs/2009.13658
https://arxiv.org/abs/2004.05150


EIR

Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a
local windowed attention with a task motivated global attention. Following prior work on long-sequence transform-
ers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and
enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks.
Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art
results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant
for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv
summarization dataset.

Tips:

• LEDForConditionalGeneration is an extension of BartForConditionalGeneration exchanging the tra-
ditional self-attention layer with Longformer’s chunked self-attention layer. LEDTokenizer is an alias of
BartTokenizer.

• LED works very well on long-range sequence-to-sequence tasks where the input_ids largely exceed a length of
1024 tokens.

• LED pads the input_ids to be a multiple of config.attention_window if required. Therefore a small speed-up is
gained, when LEDTokenizer is used with the pad_to_multiple_of argument.

• LED makes use of global attention by means of the global_attention_mask (see LongformerModel). For sum-
marization, it is advised to put global attention only on the first <s> token. For question answering, it is advised
to put global attention on all tokens of the question.

• To fine-tune LED on all 16384, gradient checkpointing can be enabled in case training leads to out-of-memory
(OOM) errors. This can be done by executing model.gradient_checkpointing_enable().

Moreover, the use_cache=False
flag can be used to disable the caching mechanism to save memory.

• A notebook showing how to evaluate LED, can be accessed here.

• A notebook showing how to fine-tune LED, can be accessed here.

• LED is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

This model was contributed by patrickvonplaten.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling LEDModel or TFLEDModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

2.6. API 301

https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing
https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing
https://huggingface.co/patrickvonplaten


EIR

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_encoder_position_embeddings (int, optional, defaults to 16384):
The maximum sequence length that the encoder might ever be used with.

max_decoder_position_embeddings (int, optional, defaults to 16384):
The maximum sequence length that the decoder might ever be used with.

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

class transformers.models.llama.configuration_llama.LlamaConfig(vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act='silu',
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs)

302 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556


EIR

The LLaMA model was proposed in LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron,
Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a
collection of foundation language models ranging from 7B to 65B parameters.

The abstract from the paper is the following:

*We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our
models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets
exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3
(175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B.
We release all our models to the research community. *

Tips:

• Weights for the LLaMA models can be obtained from by filling out this form

• After downloading the weights, they will need to be converted to the Hugging Face Transformers format using
the conversion script. The script can be called with the following (example) command:

```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py

–input_dir /path/to/downloaded/llama/weights –model_size 7B –output_dir /output/path

```
• After conversion, the model and tokenizer can be loaded via:

from transformers import LlamaForCausalLM, LlamaTokenizer

tokenizer = LlamaTokenizer.from_pretrained(“/output/path”) model = LlamaFor-
CausalLM.from_pretrained(“/output/path”)

Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the
biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load
them all in RAM). For the 65B model, it’s thus 130GB of RAM needed.

• The LLaMA tokenizer is a BPE model based on sentencepiece. One quirk of sentencepiece is that when decoding
a sequence, if the first token is the start of the word (e.g. “Banana”), the tokenizer does not prepend the prefix
space to the string.

This model was contributed by zphang with contributions from BlackSamorez. The code of the implementation in
Hugging Face is based on GPT-NeoX here. The original code of the authors can be found here.

Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling LlamaModel

hidden_size (int, optional, defaults to 4096):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 11008):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.

2.6. API 303

https://arxiv.org/abs/2302.13971
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form
https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
https://github.com/google/sentencepiece
https://huggingface.co/zphang
https://huggingface.co/BlackSamorez
https://github.com/EleutherAI/gpt-neox
https://github.com/facebookresearch/llama


EIR

num_key_value_heads (int, optional):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048
tokens, Llama 2 up to 4096, CodeLlama up to 16384.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

rms_norm_eps (float, optional, defaults to 1e-06):
The epsilon used by the rms normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

pad_token_id (int, optional):
Padding token id.

bos_token_id (int, optional, defaults to 1):
Beginning of stream token id.

eos_token_id (int, optional, defaults to 2):
End of stream token id.

pretraining_tp (int, optional, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results.
Please refer to this issue.

tie_word_embeddings (bool, optional, defaults to False):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update
max_position_embeddings to the expected new maximum. See the following thread for more informa-
tion on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

attention_bias (bool, defaults to False, optional, defaults to False):
Whether to use a bias in the query, key, value and output projection layers during self-attention.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

304 Chapter 2. Documentation

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism
https://github.com/pytorch/pytorch/issues/76232
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/


EIR

>>> from transformers import LlamaModel, LlamaConfig

>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()

>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

class transformers.models.longformer.configuration_longformer.LongformerConfig(attention_window:
List[int] | int
= 512,
sep_token_id:
int = 2,
pad_token_id:
int = 1,
bos_token_id:
int = 0,
eos_token_id:
int = 2,
vocab_size:
int = 30522,
hidden_size:
int = 768,
num_hidden_layers:
int = 12,
num_attention_heads:
int = 12,
intermedi-
ate_size: int
= 3072,
hidden_act:
str = 'gelu',
hid-
den_dropout_prob:
float = 0.1,
atten-
tion_probs_dropout_prob:
float = 0.1,
max_position_embeddings:
int = 512,
type_vocab_size:
int = 2,
initial-
izer_range:
float = 0.02,
layer_norm_eps:
float = 1e-12,
onnx_export:
bool = False,
**kwargs)

2.6. API 305



EIR

The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E.
Peters, Arman Cohan.

The abstract from the paper is the following:

Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8.
In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results
on WikiHop and TriviaQA.

Tips:

• Since the Longformer is based on RoBERTa, it doesn’t have token_type_ids. You don’t need to indicate which
token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or
</s>).

• A transformer model replacing the attention matrices by sparse matrices to go faster. Often, the local context
(e.g., what are the two tokens left and right?) is enough to take action for a given token. Some preselected input
tokens are still given global attention, but the attention matrix has way less parameters, resulting in a speed-up.
See the local attention section for more information.

This model was contributed by beltagy. The Authors’ code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling LongformerModel or TFLongformerModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

306 Chapter 2. Documentation

https://arxiv.org/pdf/2004.05150.pdf
https://huggingface.co/beltagy
https://github.com/allenai/longformer


EIR

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling LongformerModel or
TFLongformerModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

attention_window (int or List[int], optional, defaults to 512):
Size of an attention window around each token. If an int, use the same size for all layers. To specify a
different window size for each layer, use a List[int] where len(attention_window) == num_hidden_layers.

class transformers.models.longt5.configuration_longt5.LongT5Config(vocab_size=32128,
d_model=512, d_kv=64,
d_ff=2048, num_layers=6,
num_decoder_layers=None,
num_heads=8,
local_radius=127,
global_block_size=16, rela-
tive_attention_num_buckets=32,
rela-
tive_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-06,
initializer_factor=1.0,
feed_forward_proj='relu',
is_encoder_decoder=True,
en-
coder_attention_type='local',
use_cache=True,
pad_token_id=0,
eos_token_id=1, **kwargs)

The LongT5 model was proposed in LongT5: Efficient Text-To-Text Transformer for Long Sequences by Mandy Guo,
Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It’s an encoder-decoder
transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of T5 model, and
it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global
attention.

The abstract from the paper is the following:

Recent work has shown that either (1) increasing the input length or (2) increasing model size can improve the per-
formance of Transformer-based neural models. In this paper, we present a new model, called LongT5, with which we
explore the effects of scaling both the input length and model size at the same time. Specifically, we integrated atten-
tion ideas from long-input transformers (ETC), and adopted pre-training strategies from summarization pre-training
(PEGASUS) into the scalable T5 architecture. The result is a new attention mechanism we call {em Transient Global}
(TGlobal), which mimics ETC’s local/global attention mechanism, but without requiring additional side-inputs. We
are able to achieve state-of-the-art results on several summarization tasks and outperform the original T5 models on
question answering tasks.

Tips:

• LongT5ForConditionalGeneration is an extension of T5ForConditionalGeneration exchanging the tra-
ditional

encoder self-attention layer with efficient either local attention or transient-global (tglobal) attention. - Unlike the T5
model, LongT5 does not use a task prefix. Furthermore, it uses a different pre-training objective inspired by the pre-

2.6. API 307

https://arxiv.org/abs/2112.07916


EIR

training of PegasusForConditionalGeneration. - LongT5 model is designed to work efficiently and very well on
long-range sequence-to-sequence tasks where the input sequence exceeds commonly used 512 tokens. It is capable
of handling input sequences of a length up to 16,384 tokens. - For Local Attention, the sparse sliding-window local
attention operation allows a given token to attend only r tokens to the left and right of it (with r=127 by default). Local
Attention does not introduce any new parameters to the model. The complexity of the mechanism is linear in input
sequence length l: O(l*r). - Transient Global Attention is an extension of the Local Attention. It, furthermore, allows
each input token to interact with all other tokens in the layer. This is achieved via splitting an input sequence into
blocks of a fixed length k (with a default k=16). Then, a global token for such a block is obtained via summing and
normalizing the embeddings of every token in the block. Thanks to this, the attention allows each token to attend to both
nearby tokens like in Local attention, and also every global token like in the case of standard global attention (transient
represents the fact the global tokens are constructed dynamically within each attention operation). As a consequence,
TGlobal attention introduces a few new parameters – global relative position biases and a layer normalization for global
token’s embedding. The complexity of this mechanism is O(l(r + l/k)). - An example showing how to evaluate a fine-
tuned LongT5 model on the pubmed dataset is below.

>>> import evaluate
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration

>>> dataset = load_dataset("scientific_papers", "pubmed", split="validation")
>>> model = (
... LongT5ForConditionalGeneration.from_pretrained("Stancld/longt5-tglobal-large-
→˓16384-pubmed-3k_steps")
... .to("cuda")
... .half()
... )
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-
→˓3k_steps")

>>> def generate_answers(batch):
... inputs_dict = tokenizer(
... batch`"article"], max_length=16384, padding="max_length", truncation=True,␣
→˓return_tensors="pt"
... )
... input_ids = inputs_dict.input_ids.to("cuda")
... attention_mask = inputs_dict.attention_mask.to("cuda")
... output_ids = model.generate(input_ids, attention_mask=attention_mask, max_
→˓length=512, num_beams=2)
... batch["predicted_abstract"] = tokenizer.batch_decode(output_ids, skip_special_
→˓tokens=True)
... return batch

>>> result = dataset.map(generate_answer, batched=True, batch_size=2)
>>> rouge = evaluate.load("rouge")
>>> rouge.compute(predictions=result["predicted_abstract"], references=result["abstract
→˓"])

This model was contributed by [stancld <https://huggingface.co/stancld>`__. The original code can be found here.

Arguments:
vocab_size (int, optional, defaults to 32128):

Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling LongT5Model.

308 Chapter 2. Documentation

https://huggingface.co/datasets/scientific_papers
https://huggingface.co/stancld
https://github.com/google-research/longt5


EIR

d_model (int, optional, defaults to 512):
Size of the encoder layers and the pooler layer.

d_kv (int, optional, defaults to 64):
Size of the key, query, value projections per attention head. d_kv has to be equal to d_model // num_heads.

d_ff (int, optional, defaults to 2048):
Size of the intermediate feed forward layer in each LongT5Block.

num_layers (int, optional, defaults to 6):
Number of hidden layers in the Transformer encoder.

num_decoder_layers (int, optional):
Number of hidden layers in the Transformer decoder. Will use the same value as num_layers if not set.

num_heads (int, optional, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.

local_radius (int, optional, defaults to 127)
Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism.

global_block_size (int, optional, defaults to 16)
Lenght of blocks an input sequence is divided into for a global token representation. Used only for en-
coder_attention_type = “transient-global”.

relative_attention_num_buckets (int, optional, defaults to 32):
The number of buckets to use for each attention layer.

relative_attention_max_distance (int, optional, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.

dropout_rate (float, optional, defaults to 0.1):
The ratio for all dropout layers.

layer_norm_eps (float, optional, defaults to 1e-6):
The epsilon used by the layer normalization layers.

initializer_factor (float, optional, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).

feed_forward_proj (string, optional, defaults to “relu”):
Type of feed forward layer to be used. Should be one of “relu” or “gated-gelu”. LongT5v1.1 uses the
“gated-gelu” feed forward projection. Original LongT5 implementation uses “gated-gelu”.

encoder_attention_type (string, optional, defaults to “local”):
Type of encoder attention to be used. Should be one of “local” or “transient-global”, which are supported
by LongT5 implementation.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

2.6. API 309



EIR

class transformers.models.luke.configuration_luke.LukeConfig(vocab_size=50267,
entity_vocab_size=500000,
hidden_size=768,
entity_emb_size=256,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_entity_aware_attention=True,
classifier_dropout=None,
pad_token_id=1, bos_token_id=0,
eos_token_id=2, **kwargs)

The LUKE model was proposed in LUKE: Deep Contextualized Entity Representations with Entity-aware Self-
attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda and Yuji Matsumoto. It is based on RoBERTa
and adds entity embeddings as well as an entity-aware self-attention mechanism, which helps improve performance on
various downstream tasks involving reasoning about entities such as named entity recognition, extractive and cloze-style
question answering, entity typing, and relation classification.

The abstract from the paper is the following:

Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained
contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats
words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model
is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting
randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose
an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and
considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves im-
pressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results
on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity
recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering).

Tips:

• This implementation is the same as RobertaModel with the addition of entity embeddings as well as an entity-
aware self-attention mechanism, which improves performance on tasks involving reasoning about entities.

• LUKE treats entities as input tokens; therefore, it takes entity_ids, entity_attention_mask, entity_token_type_ids
and entity_position_ids as extra input. You can obtain those using LukeTokenizer.

• LukeTokenizer takes entities and entity_spans (character-based start and end positions of the entities in the
input text) as extra input. entities typically consist of `MASK] entities or Wikipedia entities. The brief description
when inputting these entities are as follows:

– Inputting [MASK] entities to compute entity representations: The [MASK] entity is used to mask entities
to be predicted during pretraining. When LUKE receives the [MASK] entity, it tries to predict the original
entity by gathering the information about the entity from the input text. Therefore, the [MASK] entity
can be used to address downstream tasks requiring the information of entities in text such as entity typing,
relation classification, and named entity recognition.

– Inputting Wikipedia entities to compute knowledge-enhanced token representations: LUKE learns rich in-
formation (or knowledge) about Wikipedia entities during pretraining and stores the information in its entity

310 Chapter 2. Documentation

https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/2010.01057


EIR

embedding. By using Wikipedia entities as input tokens, LUKE outputs token representations enriched by
the information stored in the embeddings of these entities. This is particularly effective for tasks requiring
real-world knowledge, such as question answering.

• There are three head models for the former use case:

– LukeForEntityClassification, for tasks to classify a single entity in an input text such as entity typing,
e.g. the [Open Entity dataset <https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html>`__. This
model places a linear head on top of the output entity representation.

– LukeForEntityPairClassification, for tasks to classify the relationship between two entities such as
relation classification, e.g. the TACRED dataset. This model places a linear head on top of the concatenated
output representation of the pair of given entities.

– LukeForEntitySpanClassification, for tasks to classify the sequence of entity spans, such as named
entity recognition (NER). This model places a linear head on top of the output entity representations. You
can address NER using this model by inputting all possible entity spans in the text to the model.

LukeTokenizer has a task argument, which enables you to easily create an input to these head models by spec-
ifying task=”entity_classification”, task=”entity_pair_classification”, or task=”entity_span_classification”.
Please refer to the example code of each head models.

A demo notebook on how to fine-tune LukeForEntityPairClassification for relation classification can be
found here.

There are also 3 notebooks available, which showcase how you can reproduce the results as reported in the paper
with the HuggingFace implementation of LUKE. They can be found here.

class transformers.models.m2m_100.configuration_m2m_100.M2M100Config(vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
en-
coder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
de-
coder_attention_heads=16,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activation_function='relu',
d_model=1024,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02, de-
coder_start_token_id=2,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs)

The M2M100 model was proposed in Beyond English-Centric Multilingual Machine Translation by Angela Fan, Shruti
Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume

2.6. API 311

https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html
https://nlp.stanford.edu/projects/tacred/
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LUKE
https://github.com/studio-ousia/luke/tree/master/notebooks
https://arxiv.org/abs/2010.11125


EIR

Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael
Auli, Armand Joulin.

The abstract from the paper is the following:

Existing work in translation demonstrated the potential of massively multilingual machine translation by training a
single model able to translate between any pair of languages. However, much of this work is English-Centric by training
only on data which was translated from or to English. While this is supported by large sources of training data, it does
not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model
that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers
thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to
effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters
to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when
directly translating between non-English directions while performing competitively to the best single systems of WMT.
We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.

This model was contributed by valhalla.

#Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the M2M100 model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling M2M100Model or

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

312 Chapter 2. Documentation

https://huggingface.co/valhalla


EIR

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.mamba.configuration_mamba.MambaConfig(vocab_size=50280,
hidden_size=768, state_size=16,
num_hidden_layers=32,
layer_norm_epsilon=1e-05,
pad_token_id=0,
bos_token_id=0,
eos_token_id=0, expand=2,
conv_kernel=4, use_bias=False,
use_conv_bias=True,
hidden_act='silu',
initializer_range=0.1,
residual_in_fp32=True,
time_step_rank='auto',
time_step_scale=1.0,
time_step_min=0.001,
time_step_max=0.1,
time_step_init_scheme='random',
time_step_floor=0.0001,
rescale_prenorm_residual=False,
use_cache=True, **kwargs)

The Mamba model was proposed in Mamba: Linear-Time Sequence Modeling with Selective State Spaces by Albert
Gu and Tri Dao.

This model is a new paradigm architecture based on state-space-models. You can read more about the intuition behind
these here.

The abstract from the paper is the following:

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based
on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear
attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to
address Transformers’ computational inefficiency on long sequences, but they have not performed as well as attention
on important modalities such as language. We identify that a key weakness of such models is their inability to perform
content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the
input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget informa-
tion along the sequence length dimension depending on the current token. Second, even though this change prevents
the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these
selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba).
Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its
performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba
achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language

2.6. API 313

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556
https://arxiv.org/abs/2312.00752
https://srush.github.io/annotated-s4/


EIR

modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size,
both in pretraining and downstream evaluation.

Tips:

• Mamba is a new state space model architecture that rivals the classic Transformers. It is based on the line of
progress on structured state space models, with an efficient hardware-aware design and implementation in the
spirit of FlashAttention.

• Mamba stacks mixer layers, which are the equivalent of Attention layers. The core logic of mamba is held in the
MambaMixer class.

• Two implementations cohabit: one is optimized and uses fast cuda kernels, while the other one is naive but can
run on any device!

• The current implementation leverages the original cuda kernels: the equivalent of flash attention for Mamba are
hosted in the ``mamba-ssm``(https://github.com/state-spaces/mamba) and the ``causal_conv1d``(https://github.
com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports them!

• Contributions to make the naive path faster are welcome

This model was contributed by ArthurZ. The original code can be found here.

# Usage

#Args:
vocab_size (int, optional, defaults to 50280):

Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling MambaModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the embeddings and hidden states.

state_size (int, optional, defaults to 16): shape of the state space latents. num_hidden_layers (int, optional,
defaults to 32):

Number of hidden layers in the model.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers.

pad_token_id (int, optional, defaults to 0):
Padding token id.

bos_token_id (int, optional, defaults to 0):
The id of the beginning of sentence token in the vocabulary.

eos_token_id (int, optional, defaults to 0):
The id of the end of sentence token in the vocabulary.

expand (int, optional, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (int,
optional, defaults to 4): Size of the convolution kernel. use_bias (bool, optional, defaults to False):

Whether or not to use bias in [“in_proj”, “out_proj”] of the mixer block

use_conv_bias (bool, optional, defaults to True):
Whether or not to use bias in the convolution layer of the mixer block.

hidden_act (str, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

initializer_range (float, optional, defaults to 0.1):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

314 Chapter 2. Documentation

https://github.com/Dao-AILab/flash-attention
https://github.com/state-spaces/mamba
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/causal-conv1d
https://huggingface.co/ArthurZ
https://github.com/state-spaces/mamba


EIR

residual_in_fp32 (bool, optional, defaults to True):
Whether or not residuals should be in float32. If set to False residuals will keep the same dtype as the rest
of the model

time_step_rank (Union[int,str], optional, defaults to “auto”):
Rank of the the discretization projection matrix. “auto” means that it will default to
math.ceil(self.hidden_size / 16)

time_step_scale (float, optional, defaults to 1.0):
Scale used used to scale dt_proj.bias.

time_step_min (float, optional, defaults to 0.001):
Minimum time_step used to bound dt_proj.bias.

time_step_max (float, optional, defaults to 0.1):
Maximum time_step used to bound dt_proj.bias.

time_step_init_scheme (float, optional, defaults to “random”):
Init scheme used for dt_proj.weight. Should be one of [“random”,”uniform”]

time_step_floor (float, optional, defaults to 0.0001):
Minimum clamping value of the dt_proj.bias layer initialization.

rescale_prenorm_residual (bool, optional, defaults to False):
Whether or not to rescale out_proj weights when initializing.

use_cache (bool, optional, defaults to True):
Whether or not the cache should be used.

class transformers.models.marian.configuration_marian.MarianConfig(vocab_size=58101,
decoder_vocab_size=None,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096, en-
coder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096, de-
coder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function='gelu',
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02, de-
coder_start_token_id=58100,
scale_embedding=False,
pad_token_id=58100,
eos_token_id=0,
forced_eos_token_id=0,
share_encoder_decoder_embeddings=True,
**kwargs)

A framework for translation models, using the same models as BART. Translations should be similar, but not identical
to output in the test set linked to in each model card. This model was contributed by sshleifer.

2.6. API 315

https://huggingface.co/sshleifer


EIR

Args:
vocab_size (int, optional, defaults to 58101):

Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling MarianModel or TFMarianModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 0):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

316 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556


EIR

class transformers.models.markuplm.configuration_markuplm.MarkupLMConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hidden_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, pad_token_id=0,
bos_token_id=0,
eos_token_id=2,
max_xpath_tag_unit_embeddings=256,
max_xpath_subs_unit_embeddings=1024,
tag_pad_id=216,
subs_pad_id=1001,
xpath_unit_hidden_size=32,
max_depth=50, posi-
tion_embedding_type='absolute',
use_cache=True,
classi-
fier_dropout=None,
**kwargs)

The MarkupLM model was proposed in MarkupLM: Pre-training of Text and Markup Language for Visually-rich
Document Understanding by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. MarkupLM is BERT, but applied to HTML
pages instead of raw text documents. The model incorporates additional embedding layers to improve performance,
similar to LayoutLM.

The model can be used for tasks like question answering on web pages or information extraction from web pages. It
obtains state-of-the-art results on 2 important benchmarks: - WebSRC, a dataset for Web-Based Structural Reading
Comprehension (a bit like SQuAD but for web pages) - SWDE, a dataset for information extraction from web pages
(basically named-entity recogntion on web pages)

The abstract from the paper is the following:

Multimodal pre-training with text, layout, and image has made significant progress for Visually-rich Document Un-
derstanding (VrDU), especially the fixed-layout documents such as scanned document images. While, there are still
a large number of digital documents where the layout information is not fixed and needs to be interactively and dy-
namically rendered for visualization, making existing layout-based pre-training approaches not easy to apply. In this
paper, we propose MarkupLM for document understanding tasks with markup languages as the backbone such as
HTML/XML-based documents, where text and markup information is jointly pre-trained. Experiment results show that
the pre-trained MarkupLM significantly outperforms the existing strong baseline models on several document under-
standing tasks. The pre-trained model and code will be publicly available.

Tips: - In addition to input_ids, ~MarkupLMModel.forward expects 2 additional inputs, namely xpath_tags_seq and
xpath_subs_seq. These are the XPATH tags and subscripts respectively for each token in the input sequence. - One can
use MarkupLMProcessor to prepare all data for the model. Refer to the usage guide for more info. - Demo notebooks
can be found here.

2.6. API 317

https://arxiv.org/abs/2110.08518
https://arxiv.org/abs/2110.08518
https://x-lance.github.io/WebSRC/
https://www.researchgate.net/publication/221299838_From_one_tree_to_a_forest_a_unified_solution_for_structured_web_data_extraction
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM


EIR

<img src=”https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_
doc/markuplm_architecture.jpg” alt=”drawing” width=”600”/>

<small> MarkupLM architecture. Taken from the <a href=”https://arxiv.org/abs/2110.08518”>original paper.</a>
</small>

This model was contributed by nielsr. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
inputs_ids passed to the forward method of MarkupLMModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed into MarkupLMModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

max_tree_id_unit_embeddings (int, optional, defaults to 1024):
The maximum value that the tree id unit embedding might ever use. Typically set this to something large
just in case (e.g., 1024).

max_xpath_tag_unit_embeddings (int, optional, defaults to 256):
The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
just in case (e.g., 256).

max_xpath_subs_unit_embeddings (int, optional, defaults to 1024):
The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
large just in case (e.g., 1024).

tag_pad_id (int, optional, defaults to 216):
The id of the padding token in the xpath tags.

318 Chapter 2. Documentation

https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/markuplm_architecture.jpg
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/markuplm_architecture.jpg
https://arxiv.org/abs/2110.08518
https://huggingface.co/nielsr
https://github.com/microsoft/unilm/tree/master/markuplm


EIR

subs_pad_id (int, optional, defaults to 1001):
The id of the padding token in the xpath subscripts.

xpath_tag_unit_hidden_size (int, optional, defaults to 32):
The hidden size of each tree id unit. One complete tree index will have (50*xpath_tag_unit_hidden_size)-
dim.

max_depth (int, optional, defaults to 50):
The maximum depth in xpath.

class transformers.models.mbart.configuration_mbart.MBartConfig(vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function='gelu',
d_model=1024, dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs)

of MBart

The MBart model was presented in Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan
Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.

According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale mono-
lingual corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a
complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have
focused only on the encoder, decoder, or reconstructing parts of the text.

This model was contributed by valhalla. The Authors’ code can be found here

#Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling MBartModel or TFMBartModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

2.6. API 319

https://arxiv.org/abs/2001.08210
https://huggingface.co/valhalla
https://github.com/pytorch/fairseq/tree/master/examples/mbart


EIR

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

320 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556


EIR

class transformers.models.mega.configuration_mega.MegaConfig(vocab_size=30522,
hidden_size=128,
num_hidden_layers=4,
intermediate_size=256,
ema_projection_size=16,
bidirectional=True,
shared_representation_size=64,
use_chunking=False, chunk_size=-1,
truncation=None,
normalize_before_mega=True,
normalization_type='scalenorm',
norm_affine=True, activation='silu',
attention_activation='softmax',
dropout_prob=0.1,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
use_feature_dropout=False,
use_normalized_ffn=True,
nffn_hidden_size=256,
normalize_before_ffn=True,
nffn_activation_dropout_prob=0.1,
max_positions=2048,
add_token_type_embeddings=False,
type_vocab_size=2,
initializer_range=0.02,
ema_delta_alpha_range=0.2,
ema_beta_range=0.02,
ema_gamma_omega_range=1.0,
pad_token_id=1, bos_token_id=0,
eos_token_id=2,
relative_positional_bias='rotary',
classifier_dropout=None,
use_cache=True,
add_lm_hidden_dense_layer=True,
**kwargs)

The MEGA model was proposed in Mega: Moving Average Equipped Gated Attention by Xuezhe Ma, Chunting Zhou,
Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. MEGA proposes a
new approach to self-attention with each encoder layer having a multi-headed exponential moving average in addition
to a single head of standard dot-product attention, giving the attention mechanism stronger positional biases. This
allows MEGA to perform competitively to Transformers on standard benchmarks including LRA while also having
significantly fewer parameters. MEGA’s compute efficiency allows it to scale to very long sequences, making it an
attractive option for long-document NLP tasks.

The abstract from the paper is the following:

*The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic
computational complexity, have limited its application for modeling long sequences. In this paper, we
introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with
(exponential) moving average to incorporate inductive bias of position-aware local dependencies into the
position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and
space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into mul-
tiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks,
including the Long Range Arena, neural machine translation, auto-regressive language modeling, and
image and speech classification, show that Mega achieves significant improvements over other sequence

2.6. API 321

https://arxiv.org/abs/2209.10655


EIR

models, including variants of Transformers and recent state space models. *

Tips:

• MEGA can perform quite well with relatively few parameters. See Appendix D in the MEGA paper for exam-
ples of architectural specs which perform well in various settings. If using MEGA as a decoder, be sure to set
bidirectional=False to avoid errors with default bidirectional.

• Mega-chunk is a variant of mega that reduces time and spaces complexity from quadratic to linear. Utilize
chunking with MegaConfig.use_chunking and control chunk size with MegaConfig.chunk_size

This model was contributed by mnaylor. The original code can be found here.

Implementation Notes:

• The original implementation of MEGA had an inconsistent expectation of attention masks for padding and causal
self-attention between the softmax attention and Laplace/squared ReLU method. This implementation addresses
that inconsistency.

• The original implementation did not include token type embeddings; this implementation adds support for these,
with the option controlled by MegaConfig.add_token_type_embeddings

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling MegaModel.

hidden_size (int, optional, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 4):
Number of hidden layers in the Mega encoder.

intermediate_size (int, optional, defaults to 256):
Dimensionality of the hidden size (self-attention value projection) within the Mega encoder

ema_projection_size (int, optional, defaults to 16):
Dimensionality of the MegaMultiDimensionDampedEma

bidirectional (bool, optional, defaults to True):
Whether the MegaMultiDimensionDampedEma used in Mega’s self-attention should work bidirectionally
(True) or unidirectionally (False). Bidirectional EMA is incompatible with causal decoding, so this should
be False if you intend to use the model as a decoder.

shared_representation_size (int, optional, defaults to 64):
Dimensionality of the linear projection for shared representation of self-attention queries and keys

use_chunking (bool, optional, defaults to False):
Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper)

chunk_size (int, optional, defaults to -1):
If use_chunking is set to True, determines the size of the chunks to apply to the input sequence. If chunking
is used, input sequences must be padded to a multiple of chunk_size

truncation (int, optional):
If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma

normalize_before_mega (bool, optional, defaults to True):
Whether to normalize before (True) or after (False) passing through Mega encoder blocks

normalization_type (str, optional, defaults to “scalenorm”):
Type of normalization to use in Mega encoder blocks. Choose one of “scalenorm”, “layernorm”, “rm-
snorm”, “batchnorm”, or “syncbatchnorm” (GPU required for syncbatchnorm)

322 Chapter 2. Documentation

https://huggingface.co/mnaylor
https://github.com/facebookresearch/mega


EIR

norm_affine (bool, optional, defaults to True):
If True, applies a parameterized affine transformation to inputs during normalization

activation (str, optional, defaults to “silu”):
Activation function to apply within Mega encoder blocks. Choose one of “silu”, “relu”, “linear”, “gelu”,
or “gelu_accurate”

attention_activation (str, optional, defaults to “softmax”):
Activation function to apply for single-headed self-attention (a la Transformer). Choose one of “softmax”,
“laplace”, or “relu2”

dropout_prob (float, optional, defaults to 0.1):
The dropout probability for EMA self-attention

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

use_feature_dropout (bool, optional, defaults to False):
Whether to use feature-based (True) or standard dropout (False)

use_normalized_ffn (bool, optional, defaults to True):
Whether to use the normalized feed-forward sub-layer in Mega blocks (True) or pass Mega encoder output
as-is (False)

nffn_hidden_size (int, optional, defaults to 256):
If using the normalized feed-forward network (NFFN) layer within Mega (use_normalized_ffn = True), this
is the hidden size of the NFFN

normalize_before_ffn (bool, optional, defaults to True):
Whether to normalize before (True) or after (False) the feed-forward portion of NFFN

nffn_activation_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the NFFN component.

max_positions (int, optional, defaults to 2048):
The maximum sequence length to use for positional representations. For “simple” relative positional bias,
this is a hard limit on input length; “rotary” relative positional bias will extrapolate to longer sequences

add_token_type_embeddings (bool, optional, defaults to True):
Whether to account for token types in embeddings. Left as optional to maintain compatibility with original
implementation while adding support for token types.

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling MegaModel. Only used if
add_token_type_embeddings = True

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

ema_delta_alpha_range (float, optional, defaults to 0.2):
The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in
MegaMultiDimensionDampedEma.

ema_beta_range (float, optional, defaults to 0.02):
The standard deviation for initializing the beta parameter (expansion matrix) in MegaMultiDimensionDam-
pedEma.

2.6. API 323



EIR

ema_gamma_omega_range (float, optional, defaults to 1.0):
The standard deviation for initializing the gamma (projection matrix) and omega (residual weight) param-
eters in MultiDimensionEMA.

relative_positional_bias (str, optional, defaults to “rotary”):
Type of relative positional encoding. Choose one of “rotary” or “simple”. If “simple” is selected,
max_positions is used as a limit on input size, while “rotary” extrapolates beyond max_positions.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

add_lm_hidden_dense_layer (bool, optional, defaults to True):
Whether to include a hidden layer for projection between encoder outputs and LM heads (True) or pass
hidden states directly to LM head (False). Remains optional for compatibility with original implementation

class transformers.models.megatron_bert.configuration_megatron_bert.MegatronBertConfig(vocab_size=29056,
hid-
den_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
in-
ter-
me-
di-
ate_size=4096,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
at-
ten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=0,
po-
si-
tion_embedding_type='absolute',
use_cache=True,
**kwargs)

The MegatronBERT model was proposed in Megatron-LM: Training Multi-Billion Parameter Language Models Using
Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan
Catanzaro.

The abstract from the paper is the following:

324 Chapter 2. Documentation

https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053


EIR

Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We
sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single
GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models
can further advance the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar
to GPT-2 and a 3.9 billion parameter model similar to BERT. We show that careful attention to the placement of layer
normalization in BERT-like models is critical to achieving increased performance as the model size grows. Using the
GPT-2 model we achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA
(66.5% compared to SOTA accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset
(90.9% compared to SOTA accuracy of 89.4%).

Tips:

We have provided pretrained BERT-345M checkpoints for use to evaluate or finetuning downstream tasks.

To access these checkpoints, first sign up for and setup the NVIDIA GPU Cloud (NGC) Registry CLI. Further docu-
mentation for downloading models can be found in the NGC documentation.

Alternatively, you can directly download the checkpoints using:

BERT-345M-uncased:

`bash wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/
megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0_1_uncased.zip `

BERT-345M-cased:

`bash wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/
megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0_1_cased.zip `

Once you have obtained the checkpoints from NVIDIA GPU Cloud (NGC), you have to convert them to a format that
will easily be loaded by Hugging Face Transformers and our port of the BERT code.

The following commands allow you to do the conversion. We assume that the folder models/megatron_bert contains
megatron_bert_345m_v0_1_{cased, uncased}.zip and that the commands are run from inside that folder:

`bash python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.
py megatron_bert_345m_v0_1_uncased.zip `

`bash python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.
py megatron_bert_345m_v0_1_cased.zip `

This model was contributed by jdemouth. The original code can be found here. That repository contains a multi-GPU
and multi-node implementation of the Megatron Language models. In particular, it contains a hybrid model parallel
approach using “tensor parallel” and “pipeline parallel” techniques.

Args:
vocab_size (int, optional, defaults to 29056):

Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be
represented by the inputs_ids passed when calling MegatronBertModel.

hidden_size (int, optional, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

2.6. API 325

https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m
https://ngc.nvidia.com/signup
https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1
https://huggingface.co/jdemouth
https://github.com/NVIDIA/Megatron-LM


EIR

num_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling MegatronBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

326 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.mixtral.configuration_mixtral.MixtralConfig(vocab_size=32000,
hidden_size=4096, inter-
mediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act='silu',
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1000000.0,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=2,
num_local_experts=8,
out-
put_router_logits=False,
router_aux_loss_coef=0.001,
**kwargs)

Mixtral-8x7B is Mistral AI’s second Large Language Model (LLM).

The Mixtral model was proposed by the Mistral AI team.

It was introduced in the Mixtral of Experts blogpost with the following introduction:

Today, the team is proud to release Mixtral 8x7B, a high-quality sparse mixture of experts models (SMoE) with open
weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference.
It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance
trade-offs. In particular, it matches or outperforms GPT3.5 on most standard benchmarks.

Tips:

• The model needs to be converted using the conversion script.

• If the model is quantized to 4bits, a single A100 is enough to fit the entire 45B model.

This model was contributed by Younes Belkada and Arthur Zucker . The original code can be found here.

#Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling MixtralModel

hidden_size (int, optional, defaults to 4096):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 14336):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.

2.6. API 327

https://mistral.ai/
https://mistral.ai/news/mixtral-of-experts/
https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py
https://huggingface.co/ybelkada
https://huggingface.co/ArthurZ
https://github.com/mistralai/mistral-src


EIR

num_key_value_heads (int, optional, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to 8.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 4096*32):
The maximum sequence length that this model might ever be used with. Mixtral’s sliding window attention
allows sequence of up to 4096*32 tokens.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

rms_norm_eps (float, optional, defaults to 1e-05):
The epsilon used by the rms normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

pad_token_id (int, optional):
The id of the padding token.

bos_token_id (int, optional, defaults to 1):
The id of the “beginning-of-sequence” token.

eos_token_id (int, optional, defaults to 2):
The id of the “end-of-sequence” token.

tie_word_embeddings (bool, optional, defaults to False):
Whether the model’s input and output word embeddings should be tied.

rope_theta (float, optional, defaults to 1000000.0):
The base period of the RoPE embeddings.

sliding_window (int, optional):
Sliding window attention window size. If not specified, will default to 4096.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

num_experts_per_tok (int, optional, defaults to 2):
The number of experts to root per-token, can be also interpreted as the top-p routing parameter

num_local_experts (int, optional, defaults to 8):
Number of experts per Sparse MLP layer.

output_router_logits (bool, optional, defaults to False):
Whether or not the router logits should be returned by the model. Enabeling this will also allow the model
to output the auxiliary loss. See `here <>`__ for more details

router_aux_loss_coef (float, optional, defaults to 0.001):
The aux loss factor for the total loss.

>>> from transformers import MixtralModel, MixtralConfig

328 Chapter 2. Documentation

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf


EIR

>>> # Initializing a Mixtral 7B style configuration
>>> configuration = MixtralConfig()

>>> # Initializing a model from the Mixtral 7B style configuration
>>> model = MixtralModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

class transformers.models.mobilebert.configuration_mobilebert.MobileBertConfig(vocab_size=30522,
hid-
den_size=512,
num_hidden_layers=24,
num_attention_heads=4,
intermedi-
ate_size=512,
hid-
den_act='relu',
hid-
den_dropout_prob=0.0,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=0,
embed-
ding_size=128,
tri-
gram_input=True,
use_bottleneck=True,
in-
tra_bottleneck_size=128,
use_bottleneck_attention=False,
key_query_shared_bottleneck=True,
num_feedforward_networks=4,
normaliza-
tion_type='no_norm',
classi-
fier_activation=True,
classi-
fier_dropout=None,
**kwargs)

The MobileBERT model was proposed in MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited De-
vices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. It’s a bidirectional
transformer based on the BERT model, which is compressed and accelerated using several approaches.

The abstract from the paper is the following:

Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hun-

2.6. API 329

https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984


EIR

dreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that
they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing
and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be
generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of
BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and
feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck
incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical
studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results
on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o
77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering
task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).

Tips:

• MobileBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right
rather than the left.

• MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It
is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
Models trained with a causal language modeling (CLM) objective are better in that regard.

This model was contributed by vshampor. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling MobileBertModel or TFMobileBertModel.

hidden_size (int, optional, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 512):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “relu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling MobileBertModel or
TFMobileBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

330 Chapter 2. Documentation

https://huggingface.co/vshampor
https://github.com/google-research/mobilebert


EIR

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

pad_token_id (int, optional, defaults to 0):
The ID of the token in the word embedding to use as padding.

embedding_size (int, optional, defaults to 128):
The dimension of the word embedding vectors.

trigram_input (bool, optional, defaults to True):
Use a convolution of trigram as input.

use_bottleneck (bool, optional, defaults to True):
Whether to use bottleneck in BERT.

intra_bottleneck_size (int, optional, defaults to 128):
Size of bottleneck layer output.

use_bottleneck_attention (bool, optional, defaults to False):
Whether to use attention inputs from the bottleneck transformation.

key_query_shared_bottleneck (bool, optional, defaults to True):
Whether to use the same linear transformation for query&key in the bottleneck.

num_feedforward_networks (int, optional, defaults to 4):
Number of FFNs in a block.

normalization_type (str, optional, defaults to “no_norm”):
The normalization type in MobileBERT.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

class transformers.models.mpnet.configuration_mpnet.MPNetConfig(vocab_size=30527,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12, rela-
tive_attention_num_buckets=32,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2, **kwargs)

The MPNet model was proposed in MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao
Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.

MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages
of masked language modeling and permuted language modeling for natural language understanding.

The abstract from the paper is the following:

BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for
pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and

2.6. API 331

https://arxiv.org/abs/2004.09297


EIR

thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel
pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the
dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary
position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs.
PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of
down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a
large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods
(e.g., BERT, XLNet, RoBERTa) under the same model setting.

Tips:

• MPNet doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. just
separate your segments with the separation token tokenizer.sep_token (or ``sep]`).

The original code can be found [here <https://github.com/microsoft/MPNet>`__.

Args:
vocab_size (int, optional, defaults to 30527):

Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling MPNetModel or TFMPNetModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

relative_attention_num_buckets (int, optional, defaults to 32):
The number of buckets to use for each attention layer.

332 Chapter 2. Documentation

https://github.com/microsoft/MPNet


EIR

class transformers.models.mpt.configuration_mpt.MptConfig(d_model: int = 2048, n_heads: int = 16,
n_layers: int = 24, expansion_ratio: int
= 4, max_seq_len: int = 2048,
vocab_size: int = 50368, resid_pdrop:
float = 0.0, layer_norm_epsilon: float =
1e-05, emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: transform-
ers.models.mpt.configuration_mpt.MptAttentionConfig
= None, init_device: str = 'cpu',
logit_scale: float | str | NoneType =
None, no_bias: bool = True, verbose: int
= 0, embedding_fraction: float = 1.0,
norm_type: str =
'low_precision_layernorm', use_cache:
bool = False, initializer_range=0.02,
**kwargs)

The MPT model was proposed by the MosaicML team and released with multiple sizes and finetuned variants. The
MPT models is a series of open source and commercially usable LLMs pre-trained on 1T tokens.

MPT models are GPT-style decoder-only transformers with several improvements: performance-optimized layer im-
plementations, architecture changes that provide greater training stability, and the elimination of context length limits
by replacing positional embeddings with ALiBi.

• MPT base: MPT base pre-trained models on next token prediction

• MPT instruct: MPT base models fine-tuned on instruction based tasks

• MPT storywriter: MPT base models fine-tuned for 2500 steps on 65k-token excerpts of fiction books contained
in the books3 corpus, this enables the model to handle very long sequences

The original code is available at the ``llm-foundry``(https://github.com/mosaicml/llm-foundry/tree/main) repository.

Read more about it in the release blogpost

Tips:

• Learn more about some techniques behind training of the model in this section of llm-foundry repository

• If you want to use the advanced version of the model (triton kernels, direct flash attention integration), you can
still use the original model implementation by adding trust_remote_code=True when calling from_pretrained.

• Fine-tuning Notebook on how to fine-tune MPT-7B on a free Google Colab instance to turn the model into a
Chatbot.

Args:
d_model (int, optional, defaults to 2048):

Dimensionality of the embeddings and hidden states.

n_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

n_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

expansion_ratio (int, optional, defaults to 4):
The ratio of the up/down scale in the MLP.

max_seq_len (int, optional, defaults to 2048):
The maximum sequence length of the model.

2.6. API 333

https://www.mosaicml.com/
https://github.com/mosaicml/llm-foundry/tree/main
https://www.mosaicml.com/blog/mpt-7b
https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#faqs
https://colab.research.google.com/drive/1HCpQkLL7UXW8xJUJJ29X7QAeNJKO0frZ?usp=sharing


EIR

vocab_size (int, optional, defaults to 50368):
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented
by the inputs_ids passed when calling MptModel. Check this discussion on how the vocab_size has been
defined.

resid_pdrop (float, optional, defaults to 0.0):
The dropout probability applied to the attention output before combining with residual.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers.

emb_pdrop (float, optional, defaults to 0.0):
The dropout probability for the embedding layer.

learned_pos_emb (bool, optional, defaults to True):
Whether to use learned positional embeddings.

attn_config (dict, optional):
A dictionary used to configure the model’s attention module.

init_device (str, optional, defaults to “cpu”):
The device to use for parameter initialization. Defined for backward compatibility

logit_scale (float, optional):
If not None, scale the logits by this value.

no_bias (bool, optional, defaults to True):
Whether to use bias in all linear layers.

verbose (int, optional, defaults to 0):
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
argument is deprecated.

embedding_fraction (float, optional, defaults to 1.0):
The fraction to scale the gradients of the embedding layer by.

norm_type (str, optional, defaults to “low_precision_layernorm”):
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for back-
ward compatibility.

use_cache (bool, optional, defaults to False):
Whether or not the model should return the last key/values attentions (not used by all models).

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

334 Chapter 2. Documentation

https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a


EIR

class transformers.models.mra.configuration_mra.MraConfig(vocab_size=50265, hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-05,
position_embedding_type='absolute',
block_per_row=4, approx_mode='full',
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
pad_token_id=1, bos_token_id=0,
eos_token_id=2, **kwargs)

The MRA model was proposed in Multi Resolution Analysis (MRA) for Approximate Self-Attention by Zhanpeng
Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, and Vikas Singh.

The abstract from the paper is the following:

Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent
efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-
attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity
patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Anal-
ysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show
that simple approximations based on empirical feedback and design choices informed by modern hardware and imple-
mentation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile
across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution
scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is
available at https://github.com/mlpen/mra-attention.

This model was contributed by novice03. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling MraModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

2.6. API 335

https://arxiv.org/abs/2207.10284
https://huggingface.co/novice03
https://github.com/mlpen/mra-attention


EIR

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 1):
The vocabulary size of the token_type_ids passed when calling MraModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-5):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”.

block_per_row (int, optional, defaults to 4):
Used to set the budget for the high resolution scale.

approx_mode (str, optional, defaults to “full”):
Controls whether both low and high resolution approximations are used. Set to “full” for both low and
high resolution and “sparse” for only low resolution.

initial_prior_first_n_blocks (int, optional, defaults to 0):
The initial number of blocks for which high resolution is used.

initial_prior_diagonal_n_blocks (int, optional, defaults to 0):
The number of diagonal blocks for which high resolution is used.

class transformers.models.mvp.configuration_mvp.MvpConfig(vocab_size=50267,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function='gelu',
d_model=1024, dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0, init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True, pad_token_id=1,
bos_token_id=0, eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
use_prompt=False, prompt_length=100,
prompt_mid_dim=800, **kwargs)

The MVP model was proposed in MVP: Multi-task Supervised Pre-training for Natural Language Generation by Tianyi
Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.

According to the abstract,

336 Chapter 2. Documentation

https://arxiv.org/abs/2206.12131


EIR

• MVP follows a standard Transformer encoder-decoder architecture.

• MVP is supervised pre-trained using labeled datasets.

• MVP also has task-specific soft prompts to stimulate the model’s capacity in performing a certain task.

• MVP is specially designed for natural language generation and can be adapted to a wide range of generation
tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story
generation, question answering, question generation, task-oriented dialogue system, commonsense generation,
paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural
language understanding tasks such as sequence classification and (extractive) question answering.

Tips: - We have released a series of models here, including MVP, MVP with task-specific prompts, and multi-task pre-
trained variants. - If you want to use a model without prompts (standard Transformer), you can load it through MvpFor-
ConditionalGeneration.from_pretrained(‘RUCAIBox/mvp’). - If you want to use a model with task-specific prompts,
such as summarization, you can load it through MvpForConditionalGeneration.from_pretrained(‘RUCAIBox/mvp-
summarization’). - Our model supports lightweight prompt tuning following Prefix-tuning with method
set_lightweight_tuning().

This model was contributed by Tianyi Tang. The detailed information and instructions can be found here.

Args:
vocab_size (int, optional, defaults to 50267):

Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling MvpModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

2.6. API 337

https://huggingface.co/models?filter=mvp
https://arxiv.org/abs/2101.00190
https://huggingface.co/StevenTang
https://github.com/RUCAIBox/MVP


EIR

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

use_prompt (bool, optional, defaults to False):
Whether or not to use prompt.

prompt_length (int, optional, defaults to 100):
The length of prompt.

prompt_mid_dim (int, optional, defaults to 800):
Dimensionality of the “intermediate” layer in prompt.

class transformers.models.nezha.configuration_nezha.NezhaConfig(vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
max_relative_position=64,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout=0.1,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
use_cache=True, **kwargs)

The Nezha model was proposed in NEZHA: Neural Contextualized Representation for Chinese Language Understand-
ing by Junqiu Wei et al.

The abstract from the paper is the following:

The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks
due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. In
this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed

338 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.00204
https://arxiv.org/abs/1909.00204


EIR

representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks.
The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional
Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy, Mixed Preci-
sion Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA achieves the
state-of-the-art performances when finetuned on several representative Chinese tasks, including named entity recog-
nition (People’s Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti) and natural
language inference (XNLI).

This model was contributed by sijunhe. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 21128):

Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the inputs_ids
passed to the forward method of NezhaModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
The dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed into NezhaModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

classifier_dropout (float, optional, defaults to 0.1):
The dropout ratio for attached classifiers.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

2.6. API 339

https://huggingface.co/sijunhe
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch


EIR

class transformers.models.nllb_moe.configuration_nllb_moe.NllbMoeConfig(vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
en-
coder_ffn_dim=4096,
en-
coder_attention_heads=16,
decoder_layers=12,
de-
coder_ffn_dim=4096,
de-
coder_attention_heads=16,
en-
coder_layerdrop=0.05,
de-
coder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activa-
tion_function='relu',
d_model=1024,
dropout=0.1, atten-
tion_dropout=0.1,
activa-
tion_dropout=0.0,
init_std=0.02, de-
coder_start_token_id=2,
scale_embedding=True,
router_bias=False,
router_dtype='float32',
router_ignore_padding_tokens=False,
num_experts=128,
expert_capacity=64,
en-
coder_sparse_step=4,
de-
coder_sparse_step=4,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
sec-
ond_expert_policy='all',
normal-
ize_router_prob_before_dropping=False,
batch_prioritized_routing=False,
moe_eval_capacity_token_fraction=1.0,
moe_token_dropout=0.2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2, out-
put_router_logits=False,
**kwargs)

The NLLB model was presented in No Language Left Behind: Scaling Human-Centered Machine Translation by Marta
R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice

340 Chapter 2. Documentation

https://arxiv.org/abs/2207.04672


EIR

Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic
Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan,
Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.

The abstract of the paper is the following:

Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key
focus of artificial intelligence research today. However, such efforts have coalesced around a small subset of languages,
leaving behind the vast majority of mostly low-resource languages. What does it take to break the 200 language
barrier while ensuring safe, high quality results, all while keeping ethical considerations in mind? In No Language
Left Behind, we took on this challenge by first contextualizing the need for low-resource language translation support
through exploratory interviews with native speakers. Then, we created datasets and models aimed at narrowing the
performance gap between low and high-resource languages. More specifically, we developed a conditional compute
model based on Sparsely Gated Mixture of Experts that is trained on data obtained with novel and effective data
mining techniques tailored for low-resource languages. We propose multiple architectural and training improvements
to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000
different translation directions using a human-translated benchmark, Flores-200, and combined human evaluation
with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety. Our model achieves
an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing
a universal translation system.

Tips:

• M2M100ForConditionalGeneration is the base model for both NLLB and NLLB MoE

• The NLLB-MoE is very similar to the NLLB model, but it’s feed forward layer is based on the implementation
of SwitchTransformers.

• The tokenizer is the same as the NLLB models.

This model was contributed by Arthur Zucker. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling NllbMoeModel or

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in encoder.

2.6. API 341

https://huggingface.co/ArtZucker
https://github.com/facebookresearch/fairseq


EIR

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

second_expert_policy ( str, optional, default to “all”):
The policy used for the sampling the probability of being sampled to a second expert for each token.

normalize_router_prob_before_dropping (bool, optional, defaults to True):
Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
(capacity dropping).

batch_prioritized_routing (bool, optional, defaults to True):
Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
the tokens that have the highest probabilities will be routed before other tokens that might be further in the
sequence.

moe_eval_capacity_token_fraction (float, optional, defaults to 1.0):
Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be in
range: (0.0, 1.0].

num_experts (int, optional, defaults to 128):
Number of experts for each NllbMoeSparseMlp layer.

expert_capacity (int, optional, defaults to 64):
Number of tokens that can be stored in each expert.

encoder_sparse_step (int, optional, defaults to 4):
Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.

decoder_sparse_step (int, optional, defaults to 4):
Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.

router_dtype (str, optional, default to “float32”):
The dtype used for the routers. It is preferable to keep the dtype to “float32” as specified in the selective
precision discussion in the paper.

router_ignore_padding_tokens (bool, optional, defaults to False):
Whether to ignore padding tokens when routing. if False, the padding tokens are not routed to any experts.

342 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556
https://arxiv.org/abs/2101.03961


EIR

router_bias (bool, optional, defaults to False):
Whether or not the classifier of the router should have a bias.

moe_token_dropout (float, optional, defualt ot 0.2):
Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
outputs.

output_router_logits (bool, optional, defaults to False):
Whether or not to return the router logits. Only set to True to get the auxiliary loss when training.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.nystromformer.configuration_nystromformer.NystromformerConfig(vocab_size=30000,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
in-
ter-
me-
di-
ate_size=3072,
hid-
den_act='gelu_new',
hid-
den_dropout_prob=0.1,
at-
ten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=510,
type_vocab_size=2,
seg-
ment_means_seq_len=64,
num_landmarks=64,
conv_kernel_size=65,
inv_coeff_init_option=False,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs)

The Nyströmformer model was proposed in *Nyströmformer: A Nyström-Based Algorithm for Approximating Self-
Attention* by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas
Singh.

The abstract from the paper is the following:

Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component
that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or
dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the
input sequence length has limited its application to longer sequences – a topic being actively studied in the community.

2.6. API 343

https://arxiv.org/abs/2102.03902
https://arxiv.org/abs/2102.03902


EIR

To address this limitation, we propose Nyströmformer – a model that exhibits favorable scalability as a function of
sequence length. Our idea is based on adapting the Nyström method to approximate standard self-attention with O(n)
complexity. The scalability of Nyströmformer enables application to longer sequences with thousands of tokens. We
perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence
length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly better, than standard self-
attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nyströmformer performs favorably
relative to other efficient self-attention methods. Our code is available at this https URL.

This model was contributed by novice03. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30000):

Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be repre-
sented by the inputs_ids passed when calling NystromformerModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling NystromformerModel.

segment_means_seq_len (int, optional, defaults to 64):
Sequence length used in segment-means.

num_landmarks (int, optional, defaults to 64):
The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention
matrix.

conv_kernel_size (int, optional, defaults to 65):
The kernel size of depthwise convolution used in Nystrom approximation.

inv_coeff_init_option (bool, optional, defaults to False):
Whether or not to use exact coefficient computation for the initial values for the iterative method of calcu-
lating the Moore-Penrose inverse of a matrix.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

344 Chapter 2. Documentation

https://huggingface.co/novice03
https://github.com/mlpen/Nystromformer


EIR

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

class transformers.models.openai.configuration_openai.OpenAIGPTConfig(vocab_size=40478,
n_positions=512,
n_embd=768,
n_layer=12, n_head=12,
afn='gelu',
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-
05,
initializer_range=0.02,
sum-
mary_type='cls_index',
sum-
mary_use_proj=True,
sum-
mary_activation=None,
sum-
mary_proj_to_labels=True,
sum-
mary_first_dropout=0.1,
**kwargs)

OpenAI GPT model was proposed in Improving Language Understanding by Generative Pre-Training by Alec Radford,
Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It’s a causal (unidirectional) transformer pre-trained using
language modeling on a large corpus will long range dependencies, the Toronto Book Corpus.

The abstract from the paper is the following:

Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering,
semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to
perform adequately. We demonstrate that large gains on these tasks can be realized by generative pretraining of a
language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In
contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective
transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach
on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms
discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon
the state of the art in 9 out of the 12 tasks studied.

Tips:

• GPT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather
than the left.

• GPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the
next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can
be observed in the run_generation.py example script.

Write With Transformer is a webapp created and hosted by Hugging Face showcasing the generative capabilities of
several models. GPT is one of them.

This model was contributed by thomwolf. The original code can be found here.

Note:

2.6. API 345

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://transformer.huggingface.co/doc/gpt
https://huggingface.co/thomwolf
https://github.com/openai/finetune-transformer-lm


EIR

If you want to reproduce the original tokenization process of the OpenAI GPT paper, you will need to install ftfy and
SpaCy:

`bash pip install spacy ftfy==4.4.3 python -m spacy download en `

If you don’t install ftfy and SpaCy, the OpenAIGPTTokenizer will default to tokenize using BERT’s BasicTokenizer
followed by Byte-Pair Encoding (which should be fine for most usage, don’t worry).

Args:
vocab_size (int, optional, defaults to 40478):

Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling OpenAIGPTModel or TFOpenAIGPTModel.

n_positions (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

n_embd (int, optional, defaults to 768):
Dimensionality of the embeddings and hidden states.

n_layer (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

afn (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

resid_pdrop (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

embd_pdrop (int, optional, defaults to 0.1):
The dropout ratio for the embeddings.

attn_pdrop (float, optional, defaults to 0.1):
The dropout ratio for the attention.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

summary_type (str, optional, defaults to “cls_index”):
Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and
OpenAIGPTDoubleHeadsModel.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and
OpenAIGPTDoubleHeadsModel.

346 Chapter 2. Documentation



EIR

Whether or not to add a projection after the vector extraction.

summary_activation (str, optional):
Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and
OpenAIGPTDoubleHeadsModel.

Pass “tanh” for a tanh activation to the output, any other value will result in no activation.

summary_proj_to_labels (bool, optional, defaults to True):
Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and
OpenAIGPTDoubleHeadsModel.

Whether the projection outputs should have config.num_labels or config.hidden_size classes.

summary_first_dropout (float, optional, defaults to 0.1):
Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and
OpenAIGPTDoubleHeadsModel.

The dropout ratio to be used after the projection and activation.

class transformers.models.opt.configuration_opt.OPTConfig(vocab_size=50272, hidden_size=768,
num_hidden_layers=12, ffn_dim=3072,
max_position_embeddings=2048,
do_layer_norm_before=True,
_remove_final_layer_norm=False,
word_embed_proj_dim=None,
dropout=0.1, attention_dropout=0.0,
num_attention_heads=12,
activation_function='relu',
layerdrop=0.0, init_std=0.02,
use_cache=True, pad_token_id=1,
bos_token_id=2, eos_token_id=2,
enable_bias=True,
layer_norm_elementwise_affine=True,
**kwargs)

The OPT model was proposed in Open Pre-trained Transformer Language Models by Meta AI. OPT is a series of
open-sourced large causal language models which perform similar in performance to GPT3.

The abstract from the paper is the following:

Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable
capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate
without significant capital. For the few that are available through APIs, no access is granted to the full model weights,
making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained
transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested
researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to
develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for
experimenting with all of the released models.

Tips: - OPT has the same architecture as BartDecoder. - Contrary to GPT2, OPT adds the EOS token </s> to the
beginning of every prompt.

This model was contributed by Arthur Zucker, Younes Belkada, and Patrick Von Platen. The original code can be
found here.

Args:
vocab_size (int, optional, defaults to 50272):

Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling OPTModel

2.6. API 347

https://arxiv.org/pdf/2205.01068
https://huggingface.co/ArthurZ
https://huggingface.co/ybelkada
https://huggingface.co/patrickvonplaten
https://github.com/facebookresearch/metaseq


EIR

hidden_size (int, optional, defaults to 768):
Dimensionality of the layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of decoder layers.

ffn_dim (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.

activation_function (str or function, optional, defaults to “relu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

do_layer_norm_before (bool, optional, defaults to True):
Whether to perform layer normalization before the attention block.

word_embed_proj_dim (int, optional):
word_embed_proj_dim can be set to down-project word embeddings, e.g. opt-350m. Defaults to hid-
den_size.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability. See the LayerDrop paper for more details.

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

enable_bias (bool, optional, defaults to True):
Whether or not if the linear layers in the attention blocks should use the bias term.

layer_norm_elementwise_affine (bool, optional, defaults to True):
Whether or not if the layer norms should have learnable parameters.

348 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556


EIR

class transformers.models.pegasus.configuration_pegasus.PegasusConfig(vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
en-
coder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
de-
coder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activa-
tion_function='gelu',
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02, de-
coder_start_token_id=0,
scale_embedding=False,
pad_token_id=0,
eos_token_id=1,
forced_eos_token_id=1,
**kwargs)

The Pegasus model was proposed in PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summa-
rization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.

According to the abstract,

• Pegasus’ pretraining task is intentionally similar to summarization: important sentences are removed/masked
from an input document and are generated together as one output sequence from the remaining sentences, similar
to an extractive summary.

• Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and
human eval.

This model was contributed by sshleifer. The Authors’ code can be found here.

Tips:

• Sequence-to-sequence model with the same encoder-decoder model architecture as BART. Pegasus is pre-trained
jointly on two self-supervised objective functions: Masked Language Modeling (MLM) and a novel summariza-
tion specific pretraining objective, called Gap Sentence Generation (GSG).

– MLM: encoder input tokens are randomly replaced by a mask tokens and have to be predicted by the encoder
(like in BERT)

– GSG: whole encoder input sentences are replaced by a second mask token and fed to the decoder, but which
has a causal mask to hide the future words like a regular auto-regressive transformer decoder.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the PEGASUS model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling PegasusModel or TFPegasusModel.

2.6. API 349

https://arxiv.org/pdf/1912.08777.pdf
https://arxiv.org/pdf/1912.08777.pdf
https://huggingface.co/sshleifer
https://github.com/google-research/pegasus


EIR

d_model (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 1):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

350 Chapter 2. Documentation

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556


EIR

class transformers.models.pegasus_x.configuration_pegasus_x.PegasusXConfig(vocab_size=96103,
max_position_embeddings=16384,
en-
coder_layers=16,
en-
coder_ffn_dim=4096,
en-
coder_attention_heads=16,
de-
coder_layers=16,
de-
coder_ffn_dim=4096,
de-
coder_attention_heads=16,
en-
coder_layerdrop=0.0,
de-
coder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activa-
tion_function='gelu',
d_model=1024,
dropout=0.1,
atten-
tion_dropout=0.0,
activa-
tion_dropout=0.0,
init_std=0.02, de-
coder_start_token_id=0,
scale_embedding=True,
pad_token_id=0,
eos_token_id=1,
forced_eos_token_id=1,
num_global_tokens=32,
block_size=512,
stag-
ger_local_blocks=True,
**kwargs)

The PEGASUS-X model was proposed in Investigating Efficiently Extending Transformers for Long Input Summa-
rization by Jason Phang, Yao Zhao and Peter J. Liu.

PEGASUS-X (PEGASUS eXtended) extends the PEGASUS models for long input summarization through additional
long input pretraining and using staggered block-local attention with global tokens in the encoder.

The abstract from the paper is the following:

While large pretrained Transformer models have proven highly capable at tackling natural language tasks, handling
long sequence inputs continues to be a significant challenge. One such task is long input summarization, where inputs
are longer than the maximum input context of most pretrained models. Through an extensive set of experiments, we
investigate what model architectural changes and pretraining paradigms can most efficiently adapt a pretrained Trans-
former for long input summarization. We find that a staggered, block-local Transformer with global encoder tokens
strikes a good balance of performance and efficiency, and that an additional pretraining phase on long sequences
meaningfully improves downstream summarization performance. Based on our findings, we introduce PEGASUS-X,
an extension of the PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens.

2.6. API 351

https://arxiv.org/abs/2208.04347
https://arxiv.org/abs/2208.04347


EIR

PEGASUS-X achieves strong performance on long input summarization tasks comparable with much larger models
while adding few additional parameters and not requiring model parallelism to train.

Tips:

• PEGASUS-X uses the same tokenizer as PEGASUS.

This model was contributed by `zphang <<https://huggingface.co/zphang>`__. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 96103):

Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling PegasusXModel.

d_model (int, optional, defaults to 1024):
Dimension of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 16):
Number of encoder layers.

decoder_layers (int, optional, defaults to 16):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimension of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimension of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

max_position_embeddings (int, optional, defaults to 16384):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

352 Chapter 2. Documentation

https://github.com/google-research/pegasus
seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556


EIR

forced_eos_token_id (int, optional, defaults to 1):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

num_global_tokens (int, optional, defaults to 128):
Number of global tokens to use for the encoder

block_size (int, optional, defaults to 512):
Block size for encoder local attention. Sequence length should be an exact multiple of block size. block_size
must be a multiple of 2 if stagger_local_block is True

stagger_local_block (bool, optional, defaults to True):
Whether to stagger every other local attention by half a block

class transformers.models.persimmon.configuration_persimmon.PersimmonConfig(vocab_size=262144,
hid-
den_size=4096,
intermedi-
ate_size=16384,
num_hidden_layers=36,
num_attention_heads=64,
hid-
den_act='relu2',
max_position_embeddings=16384,
initial-
izer_range=0.02,
layer_norm_eps=1e-
05,
use_cache=True,
tie_word_embeddings=False,
rope_theta=25000.0,
rope_scaling=None,
qk_layernorm=True,
hid-
den_dropout=0.0,
atten-
tion_dropout=0.0,
par-
tial_rotary_factor=0.5,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
**kwargs)

The Persimmon model was created by ADEPT, and authored by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak
Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.

The authors introduced Persimmon-8B, a decoder model based on the classic transformers architecture, with query
and key normalization. Persimmon-8B is a fully permissively-licensed model with approximately 8 billion parame-
ters, released under the Apache license. Some of the key attributes of Persimmon-8B are long context size (16K),
performance, and capabilities for multimodal extensions.

The authors showcase their approach to model evaluation, focusing on practical text generation, mirroring how users
interact with language models. The work also includes a comparative analysis, pitting Persimmon-8B against other
prominent models (MPT 7B Instruct and Llama 2 Base 7B 1-Shot), across various evaluation tasks. The results demon-
strate Persimmon-8B’s competitive performance, even with limited training data.

In terms of model details, the work outlines the architecture and training methodology of Persimmon-8B, providing

2.6. API 353

https://www.adept.ai/blog/persimmon-8b


EIR

insights into its design choices, sequence length, and dataset composition. The authors present a fast inference code that
outperforms traditional implementations through operator fusion and CUDA graph utilization while maintaining code
coherence. They express their anticipation of how the community will leverage this contribution to drive innovation,
hinting at further upcoming releases as part of an ongoing series of developments.

<Tip warning={true}>

The Persimmon models were trained using bfloat16, but the original inference uses float16 The checkpoints uploaded on
the hub use torch_dtype = ‘float16’ which will be used by the AutoModel API to cast the checkpoints from torch.float32
to torch.float16.

The dtype of the online weights is mostly irrelevant, unless you are using torch_dtype=”auto” when initializing a model
using model = AutoModelForCausalLM.from_pretrained(“path”, torch_dtype = “auto”). The reason is that the model
will first be downloaded ( using the dtype of the checkpoints online) then it will be cast to the default dtype of torch
(becomes torch.float32). Users should specify the torch_dtype they want, and if they don’t it will be torch.float32.

Finetuning the model in float16 is not recommended and known to produce nan, as such the model should be fine-tuned
in bfloat16.

</Tip>

Tips:

• To convert the model, you need to clone the original repository using git clone https://github.com/persimmon-
ai-labs/adept-inference, then get the checkpoints:

```bash git clone https://github.com/persimmon-ai-labs/adept-inference wget https://axtkn4xl5cip.objectstorage.
us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar tar -xvf
8b_base_model_release.tar python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py
–input_dir /path/to/downloaded/persimmon/weights/ –output_dir /output/path

–pt_model_path /path/to/8b_chat_model_release/iter_0001251/mp_rank_00/model_optim_rng.pt
–ada_lib_path /path/to/adept-inference

```
For the chat model: `bash wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.
customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar tar -xvf
8b_base_model_release.tar `

Thereafter, models can be loaded via:

```py from transformers import PersimmonForCausalLM, PersimmonTokenizer

model = PersimmonForCausalLM.from_pretrained(“/output/path”) tokenizer = PersimmonTok-
enizer.from_pretrained(“/output/path”) ```
This model was contributed by ArthurZ. The original code can be found here.

• Perismmon uses a sentencepiece based tokenizer, with a Unigram model. It supports bytefallback, which is only
available in tokenizers==0.14.0 for the fast tokenizer.

The LlamaTokenizer is used as it is a standard wrapper around sentencepiece. The chat template will be updated with
the templating functions in a follow up PR!

• The authors suggest to use the following prompt format for the chat mode: f”human: {prompt}nnadept:”

Args:
vocab_size (int, optional, defaults to 262144):

Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling PersimmonModel

354 Chapter 2. Documentation

https://github.com/persimmon-ai-labs/adept-inference
https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
https://huggingface.co/ArthurZ
https://github.com/persimmon-ai-labs/adept-inference

EIR

hidden_size (int, optional, defaults to 4096):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 16384):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 36):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “relu2”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 16384):
The maximum sequence length that this model might ever be used with.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-5):
The epsilon used by the rms normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

tie_word_embeddings(bool, optional, defaults to False):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 25000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update
max_position_embeddings to the expected new maximum. See the following thread for more information
on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

qk_layernorm (bool, optional, default to True):
Whether or not to normalize the Queries and Keys after projecting the hidden states

hidden_dropout (float, optional, default to 0.0):
The dropout ratio after applying the MLP to the hidden states.

attention_dropout (float, optional, default to 0.0):
The dropout ratio after computing the attention scores.

partial_rotary_factor (float, optional, default to 0.5):
Percentage of the query and keys which will have rotary embedding.

2.6. API 355

https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/

EIR

class transformers.models.phi.configuration_phi.PhiConfig(vocab_size=51200, hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0, embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act='gelu_new',
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-05,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.5,
qk_layernorm=False, bos_token_id=1,
eos_token_id=2, **kwargs)

The Phi-1 model was proposed in Textbooks Are All You Need by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli
Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman
Kalai, Yin Tat Lee and Yuanzhi Li.

The Phi-1.5 model was proposed in Textbooks Are All You Need II: phi-1.5 technical report by Yuanzhi Li, Sébastien
Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.

#Args:
vocab_size (int, optional, defaults to 51200):

Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling PhiModel.

hidden_size (int, optional, defaults to 2048):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 8192):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 24):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.

num_key_value_heads (int, optional):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

resid_pdrop (float, optional, defaults to 0.0):
Dropout probability for mlp outputs.

embd_pdrop (int, optional, defaults to 0.0):
The dropout ratio for the embeddings.

356 Chapter 2. Documentation

https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2309.05463
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf

EIR

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio after computing the attention scores.

hidden_act (str or function, optional, defaults to “gelu_new”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to
2048 tokens.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-05):
The epsilon used by the rms normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True. Whether to tie weight embeddings or not.

tie_word_embeddings (bool, optional, defaults to False):
Whether to tie weight embeddings

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update
max_position_embeddings to the expected new maximum. See the following thread for more information
on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

partial_rotary_factor (float, optional, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.

qk_layernorm (bool, optional, defaults to False):
Whether or not to normalize the Queries and Keys after projecting the hidden states.

bos_token_id (int, optional, defaults to 1):
Denotes beginning of sequences token id.

eos_token_id (int, optional, defaults to 2):
Denotes end of sequences token id.

2.6. API 357

https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/

EIR

class transformers.models.plbart.configuration_plbart.PLBartConfig(vocab_size=50005,
max_position_embeddings=1024,
encoder_layers=6,
encoder_ffn_dim=3072, en-
coder_attention_heads=12,
decoder_layers=6,
decoder_ffn_dim=3072, de-
coder_attention_heads=12,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function='gelu',
d_model=768, dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs)

of PLBart

The PLBART model was proposed in Unified Pre-training for Program Understanding and Generation by Wasi Uddin
Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. This is a BART-like model which can be used to perform
code-summarization, code-generation, and code-translation tasks. The pre-trained model plbart-base has been trained
using multilingual denoising task on Java, Python and English.

According to the abstract

Code summarization and generation empower conversion between programming language (PL) and natural language
(NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and
generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL
text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and
code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models.
Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection,
demonstrate PLBART’s effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns
program syntax, style (e.g., identifier naming convention), logical flow (e.g., if block inside an else block is equivalent
to else if block) that are crucial to program semantics and thus excels even with limited annotations.

This model was contributed by gchhablani. The Authors’ code can be found here.

#Args:
vocab_size (int, optional, defaults to 50005):

Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling PLBartModel.

d_model (int, optional, defaults to 768):
Dimensionality of the layers and the pooler layer.

encoder_layers (int, optional, defaults to 6):
Number of encoder layers.

358 Chapter 2. Documentation

https://arxiv.org/abs/2103.06333
https://huggingface.co/gchhablani
https://github.com/wasiahmad/PLBART

EIR

decoder_layers (int, optional, defaults to 6):
Number of decoder layers.

encoder_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.

decoder_ffn_dim (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

encoder_ffn_dim (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

max_position_embeddings (int, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

encoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

decoder_layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

scale_embedding (bool, optional, defaults to True):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models)

forced_eos_token_id (int, optional, defaults to 2):
The id of the token to force as the last generated token when max_length is reached. Usually set to
eos_token_id.

2.6. API 359

seehttps://arxiv.org/abs/1909.11556
seehttps://arxiv.org/abs/1909.11556

EIR

class transformers.models.prophetnet.configuration_prophetnet.ProphetNetConfig(activation_dropout:
float | None
= 0.1, activa-
tion_function:
str | Callable
| NoneType =
'gelu',
vocab_size:
int | None =
30522,
hidden_size:
int | None =
1024, en-
coder_ffn_dim:
int | None =
4096,
num_encoder_layers:
int | None =
12,
num_encoder_attention_heads:
int | None =
16, de-
coder_ffn_dim:
int | None =
4096,
num_decoder_layers:
int | None =
12,
num_decoder_attention_heads:
int | None =
16, atten-
tion_dropout:
float | None =
0.1, dropout:
float | None
= 0.1,
max_position_embeddings:
int | None =
512, init_std:
float | None
= 0.02,
is_encoder_decoder:
bool | None
= True,
add_cross_attention:
bool | None
= True, de-
coder_start_token_id:
int | None =
0, ngram: int
| None = 2,
num_buckets:
int | None =
32, rela-
tive_max_distance:
int | None =
128, dis-
able_ngram_loss:
bool | None
= False, eps:
float | None
= 0.0,
use_cache:
bool | None
= True,
pad_token_id:
int | None =
0,
bos_token_id:
int | None =
1,
eos_token_id:
int | None =
2, **kwargs)

360 Chapter 2. Documentation

EIR

The ProphetNet model was proposed in ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,
by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou on 13 Jan,
2020.

ProphetNet is an encoder-decoder model and can predict n-future tokens for “ngram” language modeling instead of
just the next token.

The abstract from the paper is the following:

In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead
of the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized
by n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting
on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale dataset
(160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new
state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.

Tips:

• ProphetNet is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right
rather than the left.

• The model architecture is based on the original Transformer, but replaces the “standard” self-attention mechanism
in the decoder by a a main self-attention mechanism and a self and n-stream (predict) self-attention mechanism.

The Authors’ code can be found here.

Args:
activation_dropout (float, optional, defaults to 0.1):

The dropout ratio for activations inside the fully connected layer.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling ProphetNetModel.

hidden_size (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

num_encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

num_encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the intermediate (often named feed-forward) layer in decoder.

num_decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

2.6. API 361

https://arxiv.org/abs/2001.04063
https://github.com/microsoft/ProphetNet

EIR

num_decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

add_cross_attention (bool, optional, defaults to True):
Whether cross-attention layers should be added to the model.

is_encoder_decoder (bool, optional, defaults to True):
Whether this is an encoder/decoder model.

pad_token_id (int, optional, defaults to 1)
Padding token id.

bos_token_id (int, optional, defaults to 0)
Beginning of stream token id.

eos_token_id (int, optional, defaults to 2)
End of stream token id.

ngram (int, optional, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.

num_buckets (int, optional, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the T5
paper for more details.

relative_max_distance (int, optional, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative position
calculation. See the T5 paper for more details.

disable_ngram_loss (bool, optional, defaults to False):
Whether be trained predicting only the next first token.

eps (float, optional, defaults to 0.0):
Controls the epsilon parameter value for label smoothing in the loss calculation. If set to 0, no label smooth-
ing is performed.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

362 Chapter 2. Documentation

seehttps://arxiv.org/abs/1910.10683
seehttps://arxiv.org/abs/1910.10683
seehttps://arxiv.org/abs/1910.10683

EIR

class transformers.models.qwen2.configuration_qwen2.Qwen2Config(vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act='silu',
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs)

Qwen2 is the new model series of large language models from the Qwen team. Previously, we released the Qwen series,
including Qwen-72B, Qwen-1.8B, Qwen-VL, Qwen-Audio, etc.

#Args:
vocab_size (int, optional, defaults to 151936):

Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling Qwen2Model

hidden_size (int, optional, defaults to 4096):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 22016):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.

num_key_value_heads (int, optional, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to 32.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 32768):
The maximum sequence length that this model might ever be used with.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

rms_norm_eps (float, optional, defaults to 1e-06):
The epsilon used by the rms normalization layers.

2.6. API 363

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf

EIR

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

tie_word_embeddings (bool, optional, defaults to False):
Whether the model’s input and output word embeddings should be tied.

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

use_sliding_window (bool, optional, defaults to False):
Whether to use sliding window attention.

sliding_window (int, optional, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to 4096.

max_window_layers (int, optional, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top
use full attention.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

>>> from transformers import Qwen2Model, Qwen2Config

>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()

>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

364 Chapter 2. Documentation

EIR

class transformers.models.reformer.configuration_reformer.ReformerConfig(attention_head_size=64,
attn_layers=['local',
'lsh', 'local', 'lsh',
'local', 'lsh'],
axial_norm_std=1.0,
ax-
ial_pos_embds=True,
ax-
ial_pos_shape=[64,
64], ax-
ial_pos_embds_dim=[64,
192],
chunk_size_lm_head=0,
eos_token_id=2,
feed_forward_size=512,
hash_seed=None,
hidden_act='relu',
hid-
den_dropout_prob=0.05,
hidden_size=256,
initial-
izer_range=0.02,
is_decoder=False,
layer_norm_eps=1e-
12,
lo-
cal_num_chunks_before=1,
lo-
cal_num_chunks_after=0,
lo-
cal_attention_probs_dropout_prob=0.05,
lo-
cal_attn_chunk_length=64,
lsh_attn_chunk_length=64,
lsh_attention_probs_dropout_prob=0.0,
lsh_num_chunks_before=1,
lsh_num_chunks_after=0,
max_position_embeddings=4096,
num_attention_heads=12,
num_buckets=None,
num_hashes=1,
pad_token_id=0,
vocab_size=320,
tie_word_embeddings=False,
use_cache=True,
classi-
fier_dropout=None,
**kwargs)

The Reformer model was proposed in the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser,
Anselm Levskaya.

The abstract from the paper is the following:

Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models

2.6. API 365

https://arxiv.org/abs/2001.04451.pdf

EIR

can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of N
times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.

This model was contributed by patrickvonplaten. The Authors’ code can be found here.

Tips:

• Reformer does not work with torch.nn.DataParallel due to a bug in PyTorch, see issue #36035.

• Use Axial position encoding (see below for more details). It’s a mechanism to avoid having a huge positional
encoding matrix (when the sequence length is very big) by factorizing it into smaller matrices.

• Replace traditional attention by LSH (local-sensitive hashing) attention (see below for more details). It’s a tech-
nique to avoid computing the full product query-key in the attention layers.

• Avoid storing the intermediate results of each layer by using reversible transformer layers to obtain them during
the backward pass (subtracting the residuals from the input of the next layer gives them back) or recomputing
them for results inside a given layer (less efficient than storing them but saves memory).

• Compute the feedforward operations by chunks and not on the whole batch.

Args:
attention_head_size (int, optional, defaults to 64):

Dimensionality of the projected key, query and value vectors

attn_layers (List`str], optional, defaults to [“local”, “lsh”, “local”, “lsh”, “local”, “lsh”]):
List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer (“lsh”)
and a LocalSelfAttention layer (“local”).

For more information on LSHSelfAttention layer, see [LSH Self Attention <reformer#lsh-self-
attention>`__. For more information on LocalSelfAttention layer, see Local Self Attention.

axial_pos_embds (bool, optional, defaults to True):
Whether or not to use axial position embeddings. For more information on how axial position embeddings
work, see Axial Position Encodings.

axial_norm_std (float, optional, defaults to 1.0):
The standard deviation of the normal_initializer for initializing the weight matrices of the axial positional
encodings.

axial_pos_shape (List`int], optional, defaults to [64, 64]):
The position dims of the axial position encodings. During training, the product of the position dims has to
be equal to the sequence length.

For more information on how axial position embeddings work, see [Axial Position Encodings
<reformer#axial-positional-encodings>`__.

axial_pos_embds_dim (List`int], optional, defaults to [64, 192]):
The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to
the hidden size.

For more information on how axial position embeddings work, see [Axial Position Encodings
<reformer#axial-positional-encodings>`__.

chunk_size_lm_head (int, optional, defaults to 0):
The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the
feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes n <
sequence_length embeddings at a time.

366 Chapter 2. Documentation

https://huggingface.co/patrickvonplaten
https://github.com/google/trax/tree/master/trax/models/reformer
https://github.com/pytorch/pytorch/issues/36035

EIR

For more information on feed forward chunking, see How does Feed Forward Chunking work?.

eos_token_id (int, optional, defaults to 2):
The token id for the end-of-sentence token.

feed_forward_size (int, optional, defaults to 512):
Dimensionality of the feed_forward layer in the residual attention block.

hash_seed (int, optional):
Seed that can be used to make local sensitive hashing in LSHSelfAttention deterministic. This should only
be set for testing purposed. For evaluation and training purposes hash_seed should be left as None to ensure
fully random rotations in local sensitive hashing scheme.

hidden_act (str or Callable, optional, defaults to “relu”):
The non-linear activation function (function or string) in the feed forward layer in the residual attention
block. If string, “gelu”, “relu”, “silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.05):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

hidden_size (int, optional, defaults to 256):
Dimensionality of the output hidden states of the residual attention blocks.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

is_decoder (bool, optional, defaults to False):
Whether or not to use a causal mask in addition to the attention_mask passed to ReformerModel. When
using the Reformer for causal language modeling, this argument should be set to True.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

local_chunk_length (int, optional, defaults to 64):
Length of chunk which attends to itself in LocalSelfAttention. Chunking reduces memory complexity from
sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
length (chunked self attention).

local_num_chunks_before (int, optional, defaults to 1):
Number of previous neighbouring chunks to attend to in LocalSelfAttention layer to itself.

local_num_chunks_after (int, optional, defaults to 0):
Number of following neighbouring chunks to attend to in LocalSelfAttention layer in addition to itself.

local_attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities in LocalSelfAttention.

lsh_attn_chunk_length (int, optional, defaults to 64):
Length of chunk which attends to itself in LSHSelfAttention. Chunking reduces memory complexity from
sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
length (chunked self attention).

lsh_num_chunks_before (int, optional, defaults to 1):
Number of previous neighbouring chunks to attend to in LSHSelfAttention layer to itself.

lsh_num_chunks_after (int, optional, defaults to 0):
Number of following neighbouring chunks to attend to in LSHSelfAttention layer to itself.

lsh_attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities in LSHSelfAttention.

2.6. API 367

EIR

max_position_embeddings (int, optional, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

num_buckets (int or List[int], optional):
Number of buckets, the key query vectors can be “hashed into” using the locality sensitive hashing scheme.
Each query key vector is hashed into a hash in 1, . . . , num_buckets. The number of buckets can also be
factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a
hash in 1-1, 1-2, . . . , num_buckets[0]-1, . . . , num_buckets[0]-num_buckets[1] if num_buckets is factorized
into two factors. The number of buckets (or the product the factors) should approximately equal sequence
length / lsh_chunk_length. If num_buckets not set, a good value is calculated on the fly.

num_hashes (int, optional, defaults to 1):
Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The
higher num_hashes, the more accurate the LSHSelfAttention becomes, but also the more memory and time
intensive the hashing becomes.

pad_token_id (int, optional, defaults to 0):
The token id for the padding token.

vocab_size (int, optional, defaults to 320):
Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling ReformerModel.

tie_word_embeddings (bool, optional, defaults to False):
Whether to tie input and output embeddings.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

classifier_dropout (float, optional):
The dropout ratio for the classification head.

368 Chapter 2. Documentation

EIR

class transformers.models.rembert.configuration_rembert.RemBertConfig(vocab_size=250300,
hidden_size=1152,
num_hidden_layers=32,
num_attention_heads=18,
in-
put_embedding_size=256,
out-
put_embedding_size=1664,
intermediate_size=4608,
hidden_act='gelu', hid-
den_dropout_prob=0.0,
atten-
tion_probs_dropout_prob=0.0,
classi-
fier_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
pad_token_id=0,
bos_token_id=312,
eos_token_id=313,
**kwargs)

The RemBERT model was proposed in Rethinking Embedding Coupling in Pre-trained Language Models by Hyung
Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, Sebastian Ruder.

The abstract from the paper is the following:

We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art pre-
trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us
to significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By
reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on
standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show
that allocating additional capacity to the output embedding provides benefits to the model that persist through the fine-
tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger output
embeddings prevent the model’s last layers from overspecializing to the pre-training task and encourage Transformer
representations to be more general and more transferable to other tasks and languages. Harnessing these findings, we
are able to train models that achieve strong performance on the XTREME benchmark without increasing the number
of parameters at the fine-tuning stage.

Tips:

For fine-tuning, RemBERT can be thought of as a bigger version of mBERT with an ALBERT-like factorization of
the embedding layer. The embeddings are not tied in pre-training, in contrast with BERT, which enables smaller input
embeddings (preserved during fine-tuning) and bigger output embeddings (discarded at fine-tuning). The tokenizer is
also similar to the Albert one rather than the BERT one.

Args:
vocab_size (int, optional, defaults to 250300):

Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling RemBertModel or TFRemBertModel. Vocabulary size of the model.
Defines the different tokens that can be represented by the inputs_ids passed to the forward method of
RemBertModel.

2.6. API 369

https://arxiv.org/abs/2010.12821

EIR

hidden_size (int, optional, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 18):
Number of attention heads for each attention layer in the Transformer encoder.

input_embedding_size (int, optional, defaults to 256):
Dimensionality of the input embeddings.

output_embedding_size (int, optional, defaults to 1664):
Dimensionality of the output embeddings.

intermediate_size (int, optional, defaults to 4608):
Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0):
The dropout ratio for the attention probabilities.

classifier_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the classifier layer when fine-tuning.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling RemBertModel or TFRemBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

370 Chapter 2. Documentation

EIR

class transformers.models.roberta.configuration_roberta.RobertaConfig(vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu', hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2, posi-
tion_embedding_type='absolute',
use_cache=True, classi-
fier_dropout=None,
**kwargs)

The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu,
Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin
Stoyanov. It is based on Google’s BERT model released in 2018.

It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training
with much larger mini-batches and learning rates.

The abstract from the paper is the following:

Language model pretraining has led to significant performance gains but careful comparison between different ap-
proaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and,
as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of
BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training
data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model
published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results high-
light the importance of previously overlooked design choices, and raise questions about the source of recently reported
improvements. We release our models and code.

Tips:

• This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta
pretrained models.

• RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses
a different pretraining scheme.

• RoBERTa doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just
separate your segments with the separation token tokenizer.sep_token (or </s>)

• Same as BERT with better pretraining tricks:

– dynamic masking: tokens are masked differently at each epoch, whereas BERT does it once and for all

– together to reach 512 tokens (so the sentences are in an order than may span several documents)

– train with larger batches

– use BPE with bytes as a subunit and not characters (because of unicode characters)

• CamemBERT is a wrapper around RoBERTa. Refer to this page for usage examples.

2.6. API 371

https://arxiv.org/abs/1907.11692
https://huggingface.co/myleott

EIR

This model was contributed by julien-c. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling RobertaModel or TFRobertaModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling RobertaModel or TFRobertaModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

372 Chapter 2. Documentation

https://huggingface.co/julien-c
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

class transformers.models.roberta_prelayernorm.configuration_roberta_prelayernorm.RobertaPreLayerNormConfig(vocab_size=50265,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
in-
ter-
me-
di-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
at-
ten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
po-
si-
tion_embedding_type='absolute',
use_cache=True,
clas-
si-
fier_dropout=None,
**kwargs)

The RoBERTa-PreLayerNorm model was proposed in fairseq: A Fast, Extensible Toolkit for Sequence Modeling by
Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. It is
identical to using the –encoder-normalize-before flag in fairseq.

The abstract from the paper is the following:

fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for
translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and
supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and
inference on modern GPUs.

Tips:

• The implementation is the same as Roberta except instead of using _Add and Norm_ it does _Norm and Add_.
Add and _Norm_ refers to the Addition and LayerNormalization as described in Attention Is All You Need.

• This is identical to using the –encoder-normalize-before flag in fairseq.

This model was contributed by andreasmaden. The original code can be found here.

Args:

2.6. API 373

https://arxiv.org/abs/1904.01038
https://fairseq.readthedocs.io/
https://arxiv.org/abs/1706.03762
https://fairseq.readthedocs.io/
https://huggingface.co/andreasmaden
https://github.com/princeton-nlp/DinkyTrain

EIR

vocab_size (int, optional, defaults to 50265):
Vocabulary size of the RoBERTa-PreLayerNorm model. Defines the number of different tokens
that can be represented by the inputs_ids passed when calling RobertaPreLayerNormModel or
TFRobertaPreLayerNormModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling RobertaPreLayerNormModel or
TFRobertaPreLayerNormModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

374 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

class transformers.models.roc_bert.configuration_roc_bert.RoCBertConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hidden_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, use_cache=True,
pad_token_id=0, posi-
tion_embedding_type='absolute',
classi-
fier_dropout=None,
en-
able_pronunciation=True,
enable_shape=True,
pronuncia-
tion_embed_dim=768,
pronuncia-
tion_vocab_size=910,
shape_embed_dim=512,
shape_vocab_size=24858,
concat_input=True,
**kwargs)

The RoCBert model was proposed in RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining by
HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. It’s a pretrained Chinese language model that
is robust under various forms of adversarial attacks.

The abstract from the paper is the following:

Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown vul-
nerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose ROCBERT:
a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation, synonyms, ty-
pos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency under different
synthesized adversarial examples. The model takes as input multimodal information including the semantic, phonetic
and visual features. We show all these features are important to the model robustness since the attack can be performed
in all the three forms. Across 5 Chinese NLU tasks, ROCBERT outperforms strong baselines under three blackbox ad-
versarial algorithms without sacrificing the performance on clean testset. It also performs the best in the toxic content
detection task under human-made attacks.

This model was contributed by weiweishi.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the RoCBert model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling RoCBertModel.

2.6. API 375

https://aclanthology.org/2022.acl-long.65.pdf
https://huggingface.co/weiweishi

EIR

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling RoCBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

classifier_dropout (float, optional):
The dropout ratio for the classification head.

enable_pronunciation (bool, optional, defaults to True):
Whether or not the model use pronunciation embed when training.

enable_shape (bool, optional, defaults to True):
Whether or not the model use shape embed when training.

pronunciation_embed_dim (int, optional, defaults to 768):
Dimension of the pronunciation_embed.

pronunciation_vocab_size (int, optional, defaults to 910):
Pronunciation Vocabulary size of the RoCBert model. Defines the number of different tokens that can be
represented by the input_pronunciation_ids passed when calling RoCBertModel.

376 Chapter 2. Documentation

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658

EIR

shape_embed_dim (int, optional, defaults to 512):
Dimension of the shape_embed.

shape_vocab_size (int, optional, defaults to 24858):
Shape Vocabulary size of the RoCBert model. Defines the number of different tokens that can be repre-
sented by the input_shape_ids passed when calling RoCBertModel.

concat_input (bool, optional, defaults to True):
Defines the way of merging the shape_embed, pronunciation_embed and word_embed, if the value is true,
output_embed = torch.cat((word_embed, shape_embed, pronunciation_embed), -1), else output_embed =
(word_embed + shape_embed + pronunciation_embed) / 3

class transformers.models.roformer.configuration_roformer.RoFormerConfig(vocab_size=50000,
embed-
ding_size=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hidden_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=1536,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, pad_token_id=0,
rotary_value=False,
use_cache=True,
**kwargs)

The RoFormer model was proposed in RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin
Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.

The abstract from the paper is the following:

Position encoding in transformer architecture provides supervision for dependency modeling between elements at dif-
ferent positions in the sequence. We investigate various methods to encode positional information in transformer-based
language models and propose a novel implementation named Rotary Position Embedding(RoPE). The proposed RoPE
encodes absolute positional information with rotation matrix and naturally incorporates explicit relative position de-
pendency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of being
expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and capability of
equipping the linear self-attention with relative position encoding. As a result, the enhanced transformer with rotary
position embedding, or RoFormer, achieves superior performance in tasks with long texts. We release the theoretical
analysis along with some preliminary experiment results on Chinese data. The undergoing experiment for English
benchmark will soon be updated.

Tips:

• RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings
have shown improved performance on classification tasks with long texts.

This model was contributed by junnyu. The original code can be found here.

Args:

2.6. API 377

https://arxiv.org/pdf/2104.09864v1.pdf
https://huggingface.co/junnyu
https://github.com/ZhuiyiTechnology/roformer

EIR

vocab_size (int, optional, defaults to 50000):
Vocabulary size of the RoFormer model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling RoFormerModel or TFRoFormerModel.

embedding_size (int, optional, defaults to None):
Dimensionality of the encoder layers and the pooler layer. Defaults to the hidden_size if not provided.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 1536):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 1536).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling RoFormerModel or TFRoFormerModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

rotary_value (bool, optional, defaults to False):
Whether or not apply rotary position embeddings on value layer.

class transformers.models.rwkv.configuration_rwkv.RwkvConfig(vocab_size=50277,
context_length=1024,
hidden_size=4096,
num_hidden_layers=32,
attention_hidden_size=None,
intermediate_size=None,
layer_norm_epsilon=1e-05,
bos_token_id=0, eos_token_id=0,
rescale_every=6,
tie_word_embeddings=False,
use_cache=True, **kwargs)

378 Chapter 2. Documentation

EIR

The RWKV model was proposed in this repo

It suggests a tweak in the traditional Transformer attention to make it linear. This way, the model can be used as
recurrent network: passing inputs for timestamp 0 and timestamp 1 together is the same as passing inputs at timestamp
0, then inputs at timestamp 1 along with the state of timestamp 0 (see example below).

This can be more efficient than a regular Transformer and can deal with sentence of any length (even if the model uses
a fixed context length for training).

This model was contributed by sgugger. The original code can be found here.

Example of use as an RNN:

```py import torch from transformers import AutoTokenizer, RwkvConfig, RwkvModel

model = RwkvModel.from_pretrained(“sgugger/rwkv-430M-pile”) tokenizer = AutoTokenizer.from_pretrained(“sgugger/rwkv-
430M-pile”)

inputs = tokenizer(“This is an example.”, return_tensors=”pt”) # Feed everything to the model outputs =
model(inputs[“input_ids”]) output_whole = outputs.last_hidden_state

outputs = model(inputs[“input_ids”][:, :2]) output_one = outputs.last_hidden_state

# Using the state computed on the first inputs, we will get the same output outputs = model(inputs[“input_ids”][:, 2:],
state=outputs.state) output_two = outputs.last_hidden_state

torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5) ```
Args:

vocab_size (int, optional, defaults to 50277):
Vocabulary size of the RWKV model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling RwkvModel.

context_length (int, optional, defaults to 1024):
The maximum sequence length that this model can be be used with in a single forward (using it in RNN
mode lets use any sequence length).

hidden_size (int, optional, defaults to 4096):
Dimensionality of the embeddings and hidden states.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the model.

attention_hidden_size (int, optional):
Dimensionality of the attention hidden states. Will default to hidden_size if unset.

intermediate_size (int, optional):
Dimensionality of the inner feed-forward layers. Will default to 4 times hidden_size if unset.

layer_norm_epsilon (float, optional, defaults to 1e-05):
The epsilon to use in the layer normalization layers.

bos_token_id (int, optional, defaults to 0):
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer
as GPTNeoX.

eos_token_id (int, optional, defaults to 0):
The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as
GPTNeoX.

2.6. API 379

https://github.com/BlinkDL/RWKV-LM
https://huggingface.co/sgugger
https://github.com/BlinkDL/RWKV-LM


EIR

rescale_every (int, optional, defaults to 6):
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
rescale_every layer. If set to 0 or a negative number, no rescale is done.

tie_word_embeddings (bool, optional, defaults to False):
Whether or not to tie the word embeddings with the input token embeddings.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last state.

class transformers.models.splinter.configuration_splinter.SplinterConfig(vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hidden_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12, use_cache=True,
pad_token_id=0,
ques-
tion_token_id=104,
**kwargs)

The Splinter model was proposed in Few-Shot Question Answering by Pretraining Span Selection by Ori Ram, Yuval
Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. Splinter is an encoder-only transformer (similar to BERT)
pretrained using the recurring span selection task on a large corpus comprising Wikipedia and the Toronto Book Corpus.

The abstract from the paper is the following:

In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an
order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few
hundred training examples are available, and observe that standard models perform poorly, highlighting the discrepancy
between current pretraining objectives and question answering. We propose a new pretraining scheme tailored for
question answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each
set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span.
Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-
tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g.,
72.7 F1 on SQuAD with only 128 training examples), while maintaining competitive performance in the high-resource
setting.

Tips:

• Splinter was trained to predict answers spans conditioned on a special QUESTION] token. These tokens contex-
tualize to question representations which are used to predict the answers. This layer is called QASS, and is the
default behaviour in the ``SplinterForQuestionAnswering` class. Therefore:

• Use SplinterTokenizer (rather than BertTokenizer), as it already contains this special token. Also, its
default behavior is to use this token when two sequences are given (for example, in the run_qa.py script).

380 Chapter 2. Documentation

https://arxiv.org/abs/2101.00438


EIR

• If you plan on using Splinter outside run_qa.py, please keep in mind the question token - it might be important
for the success of your model, especially in a few-shot setting.

• Please note there are two different checkpoints for each size of Splinter. Both are basically the same, except that
one also has the pretrained weights of the QASS layer (tau/splinter-base-qass and tau/splinter-large-qass) and
one doesn’t (tau/splinter-base and tau/splinter-large). This is done to support randomly initializing this layer at
fine-tuning, as it is shown to yield better results for some cases in the paper.

This model was contributed by [yuvalkirstain <https://huggingface.co/yuvalkirstain>`__ and oriram. The original code
can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling SplinterModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling SplinterModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

question_token_id (int, optional, defaults to 104):
The id of the [QUESTION] token.

2.6. API 381

https://huggingface.co/yuvalkirstain
https://huggingface.co/oriram
https://github.com/oriram/splinter


EIR

class transformers.models.squeezebert.configuration_squeezebert.SqueezeBertConfig(vocab_size=30522,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
interme-
di-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=0,
embed-
ding_size=768,
q_groups=4,
k_groups=4,
v_groups=4,
post_attention_groups=1,
interme-
di-
ate_groups=4,
out-
put_groups=4,
**kwargs)

The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural
networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, Kurt W. Keutzer. It’s a bidirectional transformer
similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is
that SqueezeBERT uses grouped convolutions instead of fully-connected layers for the Q, K, V and FFN layers.

The abstract from the paper is the following:

Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets,
large computing systems, and better neural network models, natural language processing (NLP) technology has made
significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant oppor-
tunity to deploy NLP in myriad applications to help web users, social networks, and businesses. In particular, we
consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However,
today’s highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally ex-
pensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. In this work, we observe
that methods such as grouped convolutions have yielded significant speedups for computer vision networks, but many
of these techniques have not been adopted by NLP neural network designers. We demonstrate how to replace several
operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture
called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on
the GLUE test set. The SqueezeBERT code will be released.

Tips:

382 Chapter 2. Documentation

https://arxiv.org/abs/2006.11316
https://arxiv.org/abs/2006.11316
https://blog.yani.io/filter-group-tutorial


EIR

• SqueezeBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right
rather than the left.

• SqueezeBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It
is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
Models trained with a causal language modeling (CLM) objective are better in that regard.

• For best results when finetuning on sequence classification tasks, it is recommended to start with the
squeezebert/squeezebert-mnli-headless checkpoint.

This model was contributed by forresti.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling SqueezeBertModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling BertModel or TFBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):

pad_token_id (int, optional, defaults to 0):
The ID of the token in the word embedding to use as padding.

embedding_size (int, optional, defaults to 768):
The dimension of the word embedding vectors.

q_groups (int, optional, defaults to 4):
The number of groups in Q layer.

k_groups (int, optional, defaults to 4):
The number of groups in K layer.

2.6. API 383

https://huggingface.co/forresti


EIR

v_groups (int, optional, defaults to 4):
The number of groups in V layer.

post_attention_groups (int, optional, defaults to 1):
The number of groups in the first feed forward network layer.

intermediate_groups (int, optional, defaults to 4):
The number of groups in the second feed forward network layer.

output_groups (int, optional, defaults to 4):
The number of groups in the third feed forward network layer.

class transformers.models.stablelm.configuration_stablelm.StableLmConfig(vocab_size=50304,
intermedi-
ate_size=6912,
hidden_size=2560,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act='silu',
max_position_embeddings=4096,
initial-
izer_range=0.02,
layer_norm_eps=1e-
05, use_cache=True,
tie_word_embeddings=False,
rope_theta=10000,
rope_scaling=None,
use_qkv_bias=False,
hidden_dropout=0.0,
atten-
tion_dropout=0.0,
par-
tial_rotary_factor=0.25,
bos_token_id=0,
eos_token_id=0,
**kwargs)

StableLM 3B 4E1T was proposed in ``StableLM 3B 4E1T`: Technical Report <https://stability.wandb.io/stability-
llm/stable-lm/reports/StableLM-3B-4E1T–VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo>`__
by Stability AI and is the first model in a series of multi-epoch pre-trained language models.

#Args:
vocab_size (int, optional, defaults to 50304):

Vocabulary size of the StableLM model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling StableLmModel.

intermediate_size (int, optional, defaults to 6912):
Dimension of the MLP representations.

hidden_size (int, optional, defaults to 2560):
Number of hidden layers in the Transformer decoder.

num_hidden_layers (int, optional, defaults to 32):
Number of hidden layers in the Transformer decoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.

384 Chapter 2. Documentation

https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo
https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo


EIR

num_key_value_heads (int, optional, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be con-
structed by meanpooling all the original heads within that group. For more details checkout `this paper. If
it is not specified, will default to num_attention_heads.

hidden_act (str or function, optional, defaults to “silu”):
The non-linear activation function (function or string).

max_position_embeddings (int, optional, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing

all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-05):
The epsilon used by the normalization layers.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

tie_word_embeddings (bool, optional, defaults to False):
Whether the model’s input and output word embeddings should be tied.

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

rope_scaling (Dict, optional):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scal-
ing strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The ex-
pected format is {“type”: strategy name, “factor”: scaling factor}. When using this flag, don’t update
max_position_embeddings to the expected new maximum. See the following thread for more informa-
tion on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/
dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API
changes in future versions.

use_qkv_bias (bool, optional, defaults to False):
Whether or not the model should use bias for qkv layers.

hidden_dropout (float, optional, defaults to 0.0):
The dropout ratio after applying the MLP to the hidden states.

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

partial_rotary_factor (float, optional, defaults to 0.25):
Percentage of the query and keys which will have rotary embedding.

bos_token_id (int, optional, defaults to 0):
The id of the BOS token in the vocabulary.

eos_token_id (int, optional, defaults to 0):
The id of the EOS token in the vocabulary.

2.6. API 385

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/


EIR

class transformers.models.starcoder2.configuration_starcoder2.Starcoder2Config(vocab_size=49152,
hid-
den_size=3072,
intermedi-
ate_size=12288,
num_hidden_layers=30,
num_attention_heads=24,
num_key_value_heads=2,
hid-
den_act='gelu_pytorch_tanh',
max_position_embeddings=4096,
initial-
izer_range=0.018042,
norm_epsilon=1e-
05,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
rope_theta=10000.0,
slid-
ing_window=None,
atten-
tion_dropout=0.0,
resid-
ual_dropout=0.0,
embed-
ding_dropout=0.0,
use_bias=True,
**kwargs)

StarCoder2 is a family of open LLMs for code and comes in 3 different sizes with 3B, 7B and 15B parameters. The
flagship StarCoder2-15B model is trained on over 4 trillion tokens and 600+ programming languages from The Stack
v2. All models use Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of
4,096 tokens, and were trained using the Fill-in-the-Middle objective. The models have been released with the paper
StarCoder 2 and The Stack v2: The Next Generation by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cas-
sano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang
Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muen-
nighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,
Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu,
Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro von Werra, and Harm de Vries.

The abstract of the paper is the following:

> The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language
Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The
Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619
programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle
notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset.
We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate
them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms
other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model,

386 Chapter 2. Documentation

https://arxiv.org/abs/2402.19173


EIR

StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms
CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at
code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning
benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL
license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers
(SWHIDs) of the source code data. Args:

vocab_size (int, optional, defaults to 49152):
Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be repre-
sented by the inputs_ids passed when calling Starcoder2Model

hidden_size (int, optional, defaults to 3072):
Dimension of the hidden representations.

intermediate_size (int, optional, defaults to 12288):
Dimension of the MLP representations.

num_hidden_layers (int, optional, defaults to 30):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 24):
Number of attention heads for each attention layer in the Transformer encoder.

num_key_value_heads (int, optional, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
If num_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used.
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head
should be constructed by meanpooling all the original heads within that group. For more details
checkout `this paper. If it is not specified, will default to 8.

hidden_act (str or function, optional, defaults to “gelu_pytorch_tanh”):
The non-linear activation function (function or string) in the decoder.

max_position_embeddings (int, optional, defaults to 4096):
The maximum sequence length that this model might ever be used with. Starcoder2’s sliding window
attention allows sequence of up to 4096*32 tokens.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

norm_epsilon (float, optional, defaults to 1e-05):
Epsilon value for the layer norm

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True.

bos_token_id (int, optional, defaults to 50256):
The id of the “beginning-of-sequence” token.

eos_token_id (int, optional, defaults to 50256):
The id of the “end-of-sequence” token.

rope_theta (float, optional, defaults to 10000.0):
The base period of the RoPE embeddings.

sliding_window (int, optional):
Sliding window attention window size. If not specified, will default to None (no sliding window).

attention_dropout (float, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.

2.6. API 387

https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf
https://arxiv.org/pdf/2305.13245.pdf


EIR

residual_dropout (float, optional, defaults to 0.0):
Residual connection dropout value.

embedding_dropout (float, optional, defaults to 0.0):
Embedding dropout.

use_bias (bool, optional, defaults to True):
Whether to use bias term on linear layers of the model.

>>> from transformers import Starcoder2Model, Starcoder2Config

>>> # Initializing a Starcoder2 7B style configuration
>>> configuration = Starcoder2Config()

>>> # Initializing a model from the Starcoder2 7B style configuration
>>> model = Starcoder2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

388 Chapter 2. Documentation



EIR

class transformers.models.switch_transformers.configuration_switch_transformers.SwitchTransformersConfig(vocab_size=32128,
d_model=768,
d_kv=64,
d_ff=2048,
ex-
pert_capacity=64,
num_layers=12,
num_sparse_encoder_layers=3,
num_decoder_layers=12,
num_sparse_decoder_layers=3,
num_heads=12,
num_experts=8,
router_bias=False,
router_jitter_noise=0.01,
router_dtype='float32',
router_ignore_padding_tokens=False,
rel-
a-
tive_attention_num_buckets=32,
rel-
a-
tive_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-
06,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
ini-
tial-
izer_factor=1.0,
dense_act_fn='relu',
is_encoder_decoder=True,
add_router_probs=False,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
**kwargs)

The SwitchTransformers model was proposed in Switch Transformers: Scaling to Trillion Parameter Models with
Simple and Efficient Sparsity by William Fedus, Barret Zoph, Noam Shazeer.

The Switch Transformer model uses a sparse T5 encoder-decoder architecture, where the MLP are replaced by a Mixture
of Experts (MoE). A routing mechanism (top 1 in this case) associates each token to one of the expert, where each expert
is a dense MLP. While switch transformers have a lot more weights than their equivalent dense models, the sparsity
allows better scaling and better finetuning performance at scale. During a forward pass, only a fraction of the weights
are used. The routing mechanism allows the model to select relevant weights on the fly which increases the model
capacity without increasing the number of operations.

The abstract from the paper is the following:

In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this
and instead selects different parameters for each incoming example. The result is a sparsely-activated model – with
outrageous numbers of parameters – but a constant computational cost. However, despite several notable successes of
MoE, widespread adoption has been hindered by complexity, communication costs and training instability – we address
these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with
reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and

2.6. API 389

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961


EIR

we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design
models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational
resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version
across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion
parameter models on the “Colossal Clean Crawled Corpus” and achieve a 4x speedup over the T5-XXL model.

Tips:

• SwitchTransformers uses the T5Tokenizer, which can be loaded directly from each model’s repository.

• The released weights are pretrained on English Masked Language Modeling task, and should be finetuned.

This model was contributed by Younes Belkada and Arthur Zucker . The original code can be found here.

Arguments:
vocab_size (int, optional, defaults to 32128):

Vocabulary size of the SwitchTransformers model. Defines the number of different tokens that can be
represented by the inputs_ids passed when calling SwitchTransformersModel.

d_model (int, optional, defaults to 768):
Size of the encoder layers and the pooler layer.

d_kv (int, optional, defaults to 64):
Size of the key, query, value projections per attention head. d_kv has to be equal to d_model // num_heads.

d_ff (int, optional, defaults to 2048):
Size of the intermediate feed forward layer in each SwitchTransformersBlock.

expert_capacity (int, optional, defaults to 64):
Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular Trans-
former.

num_layers (int, optional, defaults to 12):
Number of dense hidden layers in the Transformer encoder layer.

num_sparse_encoder_layers (int, optional, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer encoder layer.

num_decoder_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer decoder. Will use the same value as num_layers if not set.

num_sparse_decoder_layers (int, optional, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer decoder layer.

num_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

num_experts (int, optional, defaults to 8):
Number of experts for each SwitchTransformer layer.

router_bias (bool, optional, defaults to False):
Whether to add a bias to the router.

router_jitter_noise (float, optional, defaults to 0.01):
Amount of noise to add to the router.

router_dtype (str, optional, default to “float32”):
The dtype used for the routers. It is preferable to keep the dtype to “float32” as specified in the selective
precision discussion in the paper.

router_ignore_padding_tokens (bool, optional, defaults to False):
Whether to ignore padding tokens when routing.

390 Chapter 2. Documentation

https://moon-ci-docs.huggingface.co/docs/transformers/pr_19323/en/glossary#general-terms
https://huggingface.co/ybelkada
https://huggingface.co/ArtZucker
https://github.com/google/flaxformer/tree/main/flaxformer/architectures/moe
https://arxiv.org/abs/2101.03961


EIR

relative_attention_num_buckets (int, optional, defaults to 32):
The number of buckets to use for each attention layer.

relative_attention_max_distance (int, optional, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.

dropout_rate (float, optional, defaults to 0.1):
The ratio for all dropout layers.

layer_norm_eps (float, optional, defaults to 1e-6):
The epsilon used by the layer normalization layers.

router_z_loss_coef (float, optional, defaults to 0.001):
The z loss factor for the total loss.

router_aux_loss_coef (float, optional, defaults to 0.001):
The aux loss factor for the total loss.

initializer_factor (float, optional, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).

dense_act_fn (string, optional, defaults to “relu”):
Type of feed forward layer to be used. Should be one of “relu” or “gated-gelu”. SwitchTransformersv1.1
uses the “gated-gelu” feed forward projection. Original SwitchTransformers uses “relu”.

add_router_probs (bool, optional, defaults to False):
Whether to output router probabilities to compute router auxiliary loss.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.t5.configuration_t5.T5Config(vocab_size=32128, d_model=512, d_kv=64,
d_ff=2048, num_layers=6,
num_decoder_layers=None, num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-06,
initializer_factor=1.0,
feed_forward_proj='relu',
is_encoder_decoder=True, use_cache=True,
pad_token_id=0, eos_token_id=1,
classifier_dropout=0.0, **kwargs)

The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
Peter J. Liu.

The abstract from the paper is the following:

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task,
has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has
given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer
learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text
format. Our systematic study compares pretraining objectives, architectures, unlabeled datasets, transfer approaches,
and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale
and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering
summarization, question answering, text classification, and more. To facilitate future work on transfer learning for
NLP, we release our dataset, pre-trained models, and code.

Tips:

2.6. API 391

https://arxiv.org/pdf/1910.10683.pdf
https://huggingface.co/craffel
https://huggingface.co/adarob
https://huggingface.co/peterjliu


EIR

• T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and
for which

each task is converted into a text-to-text format. T5 works well on a variety of tasks out-of-the-box by prepending
a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: . . . , for
summarization: summarize: . . . . - The pretraining includes both supervised and self-supervised training. Supervised
training is conducted on downstream tasks provided by the GLUE and SuperGLUE benchmarks (converting them into
text-to-text tasks as explained above). - Self-supervised training uses corrupted tokens, by randomly removing 15% of
the tokens and replacing them with individual sentinel tokens (if several consecutive tokens are marked for removal,
the whole group is replaced with a single sentinel token). The input of the encoder is the corrupted sentence, the input
of the decoder is the original sentence and the target is then the dropped out tokens delimited by their sentinel tokens.

• T5 uses relative scalar embeddings. Encoder input padding can be done on the left and on the right.

• See the training, inference and scripts sections below for all details regarding usage.

T5 comes in different sizes:

• t5-small

• t5-base

• t5-large

• t5-3b

• t5-11b.

Based on the original T5 model, Google has released some follow-up works:

• T5v1.1: T5v1.1 is an improved version of T5 with some architectural tweaks, and is pre-trained on C4 only
without mixing in the supervised tasks. Refer to the documentation of T5v1.1 which can be found here.

• mT5: mT5 is a multilingual T5 model. It is pre-trained on the mC4 corpus, which includes 101 languages. Refer
to the documentation of mT5 which can be found here.

• byT5: byT5 is a T5 model pre-trained on byte sequences rather than SentencePiece subword token sequences.
Refer to the documentation of byT5 which can be found here.

• UL2: UL2 is a T5 like model pretrained on various denoising objectives

• Flan-T5: Flan is a pretraining methods that is based on prompting. The Flan-T5 are T5 models trained
on the Flan collection of

datasets which include: taskmaster2, djaym7/wiki_dialog, deepmind/code_contests, lambada, gsm8k,
aqua_rat, esnli, quasc and qed.

• FLan-UL2 : the UL2 model finetuned using the “Flan” prompt tuning and dataset collection.

• UMT5: UmT5 is a multilingual T5 model trained on an improved and refreshed mC4 multilingual corpus, 29
trillion characters across 107 language, using a new sampling method, UniMax. Refer to

the documentation of mT5 which can be found here.

All checkpoints can be found on the hub.

This model was contributed by thomwolf. The original code can be found here.

<a id=’training’></a>

Arguments:
vocab_size (int, optional, defaults to 32128):

Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling T5Model or TFT5Model.

392 Chapter 2. Documentation

https://huggingface.co/t5-small
https://huggingface.co/t5-base
https://huggingface.co/t5-large
https://huggingface.co/t5-3b
https://huggingface.co/t5-11b
t5v1.1
https://huggingface.co/models?search=t5
https://huggingface.co/thomwolf
https://github.com/google-research/text-to-text-transfer-transformer


EIR

d_model (int, optional, defaults to 512):
Size of the encoder layers and the pooler layer.

d_kv (int, optional, defaults to 64):
Size of the key, query, value projections per attention head. The inner_dim of the projection layer will be
defined as num_heads * d_kv.

d_ff (int, optional, defaults to 2048):
Size of the intermediate feed forward layer in each T5Block.

num_layers (int, optional, defaults to 6):
Number of hidden layers in the Transformer encoder.

num_decoder_layers (int, optional):
Number of hidden layers in the Transformer decoder. Will use the same value as num_layers if not set.

num_heads (int, optional, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.

relative_attention_num_buckets (int, optional, defaults to 32):
The number of buckets to use for each attention layer.

relative_attention_max_distance (int, optional, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.

dropout_rate (float, optional, defaults to 0.1):
The ratio for all dropout layers.

classifier_dropout (float, optional, defaults to 0.0):
The dropout ratio for classifier.

layer_norm_eps (float, optional, defaults to 1e-6):
The epsilon used by the layer normalization layers.

initializer_factor (float, optional, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).

feed_forward_proj (string, optional, defaults to “relu”):
Type of feed forward layer to be used. Should be one of “relu” or “gated-gelu”. T5v1.1 uses the “gated-
gelu” feed forward projection. Original T5 uses “relu”.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

2.6. API 393



EIR

class transformers.models.visual_bert.configuration_visual_bert.VisualBertConfig(vocab_size=30522,
hid-
den_size=768,
vi-
sual_embedding_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
by-
pass_transformer=False,
spe-
cial_visual_initialize=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs)

The VisualBERT model was proposed in VisualBERT: A Simple and Performant Baseline for Vision and Language by
Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. VisualBERT is a neural network trained on
a variety of (image, text) pairs.

The abstract from the paper is the following:

We propose VisualBERT, a simple and flexible framework for modeling a broad range of vision-and-language tasks.
VisualBERT consists of a stack of Transformer layers that implicitly align elements of an input text and regions in an
associated input image with self-attention. We further propose two visually-grounded language model objectives for
pre-training VisualBERT on image caption data. Experiments on four vision-and-language tasks including VQA, VCR,
NLVR2, and Flickr30K show that VisualBERT outperforms or rivals with state-of-the-art models while being signif-
icantly simpler. Further analysis demonstrates that VisualBERT can ground elements of language to image regions
without any explicit supervision and is even sensitive to syntactic relationships, tracking, for example, associations
between verbs and image regions corresponding to their arguments.

Tips:

1. Most of the checkpoints provided work with the VisualBertForPreTraining configuration. Other check-
points provided are the fine-tuned checkpoints for down-stream tasks - VQA (‘visualbert-vqa’), VCR (‘visualbert-
vcr’), NLVR2 (‘visualbert-nlvr2’). Hence, if you are not working on these downstream tasks, it is recommended
that you use the pretrained checkpoints.

2. For the VCR task, the authors use a fine-tuned detector for generating visual embeddings, for all the checkpoints.
We do not provide the detector and its weights as a part of the package, but it will be available in the research
projects, and the states can be loaded directly into the detector provided.

Args:

394 Chapter 2. Documentation

https://arxiv.org/pdf/1908.03557


EIR

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling VisualBertModel. Vocabulary size of the model. Defines the dif-
ferent tokens that can be represented by the inputs_ids passed to the forward method of VisualBertModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

visual_embedding_dim (int, optional, defaults to 512):
Dimensionality of the visual embeddings to be passed to the model.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling VisualBertModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

bypass_transformer (bool, optional, defaults to False):
Whether or not the model should bypass the transformer for the visual embeddings. If set to True, the
model directly concatenates the visual embeddings from VisualBertEmbeddings with text output from
transformers, and then pass it to a self-attention layer.

special_visual_initialize (bool, optional, defaults to True):
Whether or not the visual token type and position type embedding weights should be initialized the same
as the textual token type and positive type embeddings. When set to True, the weights of the textual token
type and position type embeddings are copied to the respective visual embedding layers.

2.6. API 395



EIR

class transformers.models.xglm.configuration_xglm.XGLMConfig(vocab_size=256008,
max_position_embeddings=2048,
d_model=1024, ffn_dim=4096,
num_layers=24,
attention_heads=16,
activation_function='gelu',
dropout=0.1, attention_dropout=0.1,
activation_dropout=0.0,
layerdrop=0.0, init_std=0.02,
scale_embedding=True,
use_cache=True,
decoder_start_token_id=2,
pad_token_id=1, bos_token_id=0,
eos_token_id=2, **kwargs)

The XGLM model was proposed in Few-shot Learning with Multilingual Language Models by Xi Victoria Lin, Todor
Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei
Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke
Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.

The abstract from the paper is the following:

Large-scale autoregressive language models such as GPT-3 are few-shot learners that can perform a wide range of
language tasks without fine-tuning. While these models are known to be able to jointly represent many different lan-
guages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work,
we train multilingual autoregressive language models on a balanced corpus covering a diverse set of languages, and
study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion param-
eters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of
comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings
and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the
FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 translation directions
with 32 training examples, while surpassing the official supervised baseline in 45 directions. We present a detailed
analysis of where the model succeeds and fails, showing in particular that it enables cross-lingual in-context learning
on some tasks, while there is still room for improvement on surface form robustness and adaptation to tasks that do not
have a natural cloze form. Finally, we evaluate our models in social value tasks such as hate speech detection in five
languages and find it has limitations similar to comparable sized GPT-3 models.

This model was contributed by Suraj. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 256008):

Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by
the inputs_ids passed when calling XGLMModel or FlaxXGLMModel.

max_position_embeddings (int, optional, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

d_model (int, optional, defaults to 1024):
Dimension of the layers and the pooler layer.

ffn_dim (int, optional, defaults to 4096):
Dimension of the “intermediate” (often named feed-forward) layer in decoder.

num_layers (int, optional, defaults to 24):
Number of hidden layers Transformer decoder.

396 Chapter 2. Documentation

https://arxiv.org/abs/2112.10668
https://huggingface.co/valhalla
https://github.com/pytorch/fairseq/tree/main/examples/xglm


EIR

attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler.

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

activation_dropout (float, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.

layerdrop (float, optional, defaults to 0.0):
The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

scale_embedding (bool, optional, defaults to True):
Scale embeddings by diving by sqrt(d_model).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

class transformers.models.xlm.configuration_xlm.XLMConfig(vocab_size=30145, emb_dim=2048,
n_layers=12, n_heads=16, dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False, asm=False, n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=0.02209708691207961,
layer_norm_eps=1e-12, init_std=0.02,
bos_index=0, eos_index=1,
pad_index=2, unk_index=3,
mask_index=5, is_encoder=True,
summary_type='first',
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5, end_n_top=5,
mask_token_id=0, lang_id=0,
pad_token_id=2, bos_token_id=0,
**kwargs)

The XLM model was proposed in Cross-lingual Language Model Pretraining by Guillaume Lample, Alexis Conneau.
It’s a transformer pretrained using one of the following objectives:

• a causal language modeling (CLM) objective (next token prediction),

• a masked language modeling (MLM) objective (BERT-like), or

• a Translation Language Modeling (TLM) object (extension of BERT’s MLM to multiple language inputs)

2.6. API 397

seehttps://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1901.07291


EIR

The abstract from the paper is the following:

Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding.
In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We
propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual
data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain
state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI,
our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation,
we obtain 34.3 BLEU on WMT’16 German-English, improving the previous state of the art by more than 9 BLEU.
On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT’16 Romanian-English,
outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly
available.

Tips:

• XLM has many different checkpoints, which were trained using different objectives: CLM, MLM or TLM. Make
sure to select the correct objective for your task (e.g. MLM checkpoints are not suitable for generation).

• XLM has multilingual checkpoints which leverage a specific lang parameter. Check out the multi-lingual page
for more information.

• A transformer model trained on several languages. There are three different type of training for this model and
the library provides checkpoints for all of them:

– Causal language modeling (CLM) which is the traditional autoregressive training (so this model could be
in the previous section as well). One of the languages is selected for each training sample, and the model
input is a sentence of 256 tokens, that may span over several documents in one of those languages.

– Masked language modeling (MLM) which is like RoBERTa. One of the languages is selected for each
training sample, and the model input is a sentence of 256 tokens, that may span over several documents in
one of those languages, with dynamic masking of the tokens.

– A combination of MLM and translation language modeling (TLM). This consists of concatenating a sen-
tence in two different languages, with random masking. To predict one of the masked tokens, the model
can use both, the surrounding context in language 1 and the context given by language 2.

This model was contributed by thomwolf. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30145):

Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling XLMModel or TFXLMModel.

emb_dim (int, optional, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.

n_layer (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_dropout (float, optional, defaults to 0.1):
The dropout probability for the attention mechanism

gelu_activation (bool, optional, defaults to True):
Whether or not to use gelu for the activations instead of relu.

398 Chapter 2. Documentation

https://huggingface.co/thomwolf
https://github.com/facebookresearch/XLM/


EIR

sinusoidal_embeddings (bool, optional, defaults to False):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.

causal (bool, optional, defaults to False):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask
in order to only attend to the left-side context instead if a bidirectional context.

asm (bool, optional, defaults to False):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.

n_langs (int, optional, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.

use_lang_emb (bool, optional, defaults to True)
Whether to use language embeddings. Some models use additional language embeddings, see the multi-
lingual models page for information on how to use them.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

embed_init_std (float, optional, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.

init_std (int, optional, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

bos_index (int, optional, defaults to 0):
The index of the beginning of sentence token in the vocabulary.

eos_index (int, optional, defaults to 1):
The index of the end of sentence token in the vocabulary.

pad_index (int, optional, defaults to 2):
The index of the padding token in the vocabulary.

unk_index (int, optional, defaults to 3):
The index of the unknown token in the vocabulary.

mask_index (int, optional, defaults to 5):
The index of the masking token in the vocabulary.

is_encoder(bool, optional, defaults to True):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.

summary_type (string, optional, defaults to “first”):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

2.6. API 399

http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings
http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings


EIR

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Whether or not to add a projection after the vector extraction.

summary_activation (str, optional):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Pass “tanh” for a tanh activation to the output, any other value will result in no activation.

summary_proj_to_labels (bool, optional, defaults to True):
Used in the sequence classification and multiple choice models.

Whether the projection outputs should have config.num_labels or config.hidden_size classes.

summary_first_dropout (float, optional, defaults to 0.1):
Used in the sequence classification and multiple choice models.

The dropout ratio to be used after the projection and activation.

start_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

end_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

mask_token_id (int, optional, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.

lang_id (int, optional, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.

400 Chapter 2. Documentation



EIR

class transformers.models.xlm_prophetnet.configuration_xlm_prophetnet.XLMProphetNetConfig(activation_dropout:
float
|
None
=
0.1,
ac-
ti-
va-
tion_function:
str
|
Callable
|
None-
Type
=
'gelu',
vo-
cab_size:
int
|
None
=
30522,
hid-
den_size:
int
|
None
=
1024,
en-
coder_ffn_dim:
int
|
None
=
4096,
num_encoder_layers:
int
|
None
=
12,
num_encoder_attention_heads:
int
|
None
=
16,
de-
coder_ffn_dim:
int
|
None
=
4096,
num_decoder_layers:
int
|
None
=
12,
num_decoder_attention_heads:
int
|
None
=
16,
at-
ten-
tion_dropout:
float
|
None
=
0.1,
dropout:
float
|
None
=
0.1,
max_position_embeddings:
int
|
None
=
512,
init_std:
float
|
None
=
0.02,
is_encoder_decoder:
bool
|
None
=
True,
add_cross_attention:
bool
|
None
=
True,
de-
coder_start_token_id:
int
|
None
=
0,
ngram:
int
|
None
=
2,
num_buckets:
int
|
None
=
32,
rel-
a-
tive_max_distance:
int
|
None
=
128,
dis-
able_ngram_loss:
bool
|
None
=
False,
eps:
float
|
None
=
0.0,
use_cache:
bool
|
None
=
True,
pad_token_id:
int
|
None
=
0,
bos_token_id:
int
|
None
=
1,
eos_token_id:
int
|
None
=
2,
**kwargs)

2.6. API 401



EIR

The XLM-ProphetNet model was proposed in ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-
training, by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou
on 13 Jan, 2020.

XLM-ProphetNet is an encoder-decoder model and can predict n-future tokens for “ngram” language modeling in-
stead of just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual
“wiki100” Wikipedia dump.

The abstract from the paper is the following:

In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead
of the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized
by n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting
on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale dataset
(160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new
state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.

The Authors’ code can be found here.

Tips:

• XLM-ProphetNet’s model architecture and pretraining objective is same as ProphetNet, but XLM-ProphetNet
was pre-trained on the cross-lingual dataset XGLUE.

Args:
activation_dropout (float, optional, defaults to 0.1):

The dropout ratio for activations inside the fully connected layer.

activation_function (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

vocab_size (int, optional, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented
by the inputs_ids passed when calling XLMProphetNetModel.

hidden_size (int, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.

encoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

num_encoder_layers (int, optional, defaults to 12):
Number of encoder layers.

num_encoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

decoder_ffn_dim (int, optional, defaults to 4096):
Dimensionality of the intermediate (often named feed-forward) layer in decoder.

num_decoder_layers (int, optional, defaults to 12):
Number of decoder layers.

num_decoder_attention_heads (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.

402 Chapter 2. Documentation

https://arxiv.org/abs/2001.04063
https://arxiv.org/abs/2001.04063
https://github.com/microsoft/ProphetNet


EIR

attention_dropout (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

init_std (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

add_cross_attention (bool, optional, defaults to True):
Whether cross-attention layers should be added to the model.

is_encoder_decoder (bool, optional, defaults to True):
Whether this is an encoder/decoder model.

pad_token_id (int, optional, defaults to 1)
Padding token id.

bos_token_id (int, optional, defaults to 0)
Beginning of stream token id.

eos_token_id (int, optional, defaults to 2)
End of stream token id.

ngram (int, optional, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.

num_buckets (int, optional, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the T5
paper for more details.

relative_max_distance (int, optional, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative position
calculation. See the T5 paper for more details.

disable_ngram_loss (bool, optional, defaults to False):
Whether be trained predicting only the next first token.

eps (float, optional, defaults to 0.0):
Controls the epsilon parameter value for label smoothing in the loss calculation. If set to 0, no label smooth-
ing is performed.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models).

2.6. API 403

seehttps://arxiv.org/abs/1910.10683
seehttps://arxiv.org/abs/1910.10683
seehttps://arxiv.org/abs/1910.10683


EIR

class transformers.models.xlm_roberta.configuration_xlm_roberta.XLMRobertaConfig(vocab_size=30522,
hid-
den_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermedi-
ate_size=3072,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
atten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initial-
izer_range=0.02,
layer_norm_eps=1e-
12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
posi-
tion_embedding_type='absolute',
use_cache=True,
classi-
fier_dropout=None,
**kwargs)

The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual Representation Learning at Scale by Alexis
Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard
Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook’s RoBERTa model released in 2019.
It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.

The abstract from the paper is the following:

This paper shows that pretraining multilingual language models at scale leads to significant performance gains for
a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred
languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly out-
performs multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy
on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly
well on low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous
XLM model. We also present a detailed empirical evaluation of the key factors that are required to achieve these gains,
including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low
resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacri-
ficing per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE and XNLI
benchmarks. We will make XLM-R code, data, and models publicly available.

Tips:

• XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM multilingual
models, it does not require lang tensors to understand which language is used, and should be able to determine
the correct language from the input ids.

• Uses RoBERTa tricks on the XLM approach, but does not use the translation language modeling objective. It
only uses masked language modeling on sentences coming from one language.

404 Chapter 2. Documentation

https://arxiv.org/abs/1911.02116


EIR

• This implementation is the same as RoBERTa. Refer to the documentation of RoBERTa for usage examples as
well as the information relative to the inputs and outputs.

This model was contributed by stefan-it. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 30522):

Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be repre-
sented by the inputs_ids passed when calling XLMRobertaModel or TFXLMRobertaModel.

hidden_size (int, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling XLMRobertaModel or
TFXLMRobertaModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

is_decoder (bool, optional, defaults to False):
Whether the model is used as a decoder or not. If False, the model is used as an encoder.

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

2.6. API 405

https://huggingface.co/stefan-it
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.xlm_roberta_xl.configuration_xlm_roberta_xl.XLMRobertaXLConfig(vocab_size=250880,
hid-
den_size=2560,
num_hidden_layers=36,
num_attention_heads=32,
in-
ter-
me-
di-
ate_size=10240,
hid-
den_act='gelu',
hid-
den_dropout_prob=0.1,
at-
ten-
tion_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
ini-
tial-
izer_range=0.02,
layer_norm_eps=1e-
05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
po-
si-
tion_embedding_type='absolute',
use_cache=True,
clas-
si-
fier_dropout=None,
**kwargs)

The XLM-RoBERTa-XL model was proposed in Larger-Scale Transformers for Multilingual Masked Language Mod-
eling by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.

The abstract from the paper is the following:

Recent work has demonstrated the effectiveness of cross-lingual language model pretraining for cross-lingual under-
standing. In this study, we present the results of two larger multilingual masked language models, with 3.5B and 10.7B
parameters. Our two new models dubbed XLM-R XL and XLM-R XXL outperform XLM-R by 1.8% and 2.4% aver-
age accuracy on XNLI. Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE
benchmark by 0.3% on average while handling 99 more languages. This suggests pretrained models with larger capac-
ity may obtain both strong performance on high-resource languages while greatly improving low-resource languages.
We make our code and models publicly available.

Tips:

• XLM-RoBERTa-XL is a multilingual model trained on 100 different languages. Unlike some XLM multilingual
models, it does not require lang tensors to understand which language is used, and should be able to determine
the correct language from the input ids.

This model was contributed by Soonhwan-Kwon and stefan-it. The original code can be found here.

406 Chapter 2. Documentation

https://arxiv.org/abs/2105.00572
https://arxiv.org/abs/2105.00572
https://github.com/Soonhwan-Kwon
https://huggingface.co/stefan-it
https://github.com/pytorch/fairseq/tree/master/examples/xlmr


EIR

Args:
vocab_size (int, optional, defaults to 250880):

Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be
represented by the inputs_ids passed when calling XLMRobertaXLModel.

hidden_size (int, optional, defaults to 2560):
Dimensionality of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 36):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 10240):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

hidden_act (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“silu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 514):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 1):
The vocabulary size of the token_type_ids passed when calling XLMRobertaXLModel or
TFXLMRobertaXLModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-5):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”. For posi-
tional embeddings use “absolute”. For more information on “relative_key”, please refer to Self-Attention
with Relative Position Representations (Shaw et al.). For more information on “relative_key_query”, please
refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

use_cache (bool, optional, defaults to True):
Whether or not the model should return the last key/values attentions (not used by all models). Only relevant
if config.is_decoder=True.

classifier_dropout (float, optional):
The dropout ratio for the classification head.

2.6. API 407

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2009.13658


EIR

class transformers.models.xlnet.configuration_xlnet.XLNetConfig(vocab_size=32000,
d_model=1024, n_layer=24,
n_head=16, d_inner=4096,
ff_activation='gelu',
untie_r=True, attn_type='bi',
initializer_range=0.02,
layer_norm_eps=1e-12,
dropout=0.1, mem_len=512,
reuse_len=None,
use_mems_eval=True,
use_mems_train=False,
bi_data=False, clamp_len=-1,
same_length=False,
summary_type='last',
summary_use_proj=True,
summary_activation='tanh',
summary_last_dropout=0.1,
start_n_top=5, end_n_top=5,
pad_token_id=5,
bos_token_id=1,
eos_token_id=2, **kwargs)

The XLNet model was proposed in XLNet: Generalized Autoregressive Pretraining for Language Understanding by
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. XLnet is an extension of
the Transformer-XL model pre-trained using an autoregressive method to learn bidirectional contexts by maximizing
the expected likelihood over all permutations of the input sequence factorization order.

The abstract from the paper is the following:

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves
better performance than pretraining approaches based on autoregressive language modeling. However, relying on
corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-
finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining
method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations
of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Fur-
thermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining.
Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large margin,
including question answering, natural language inference, sentiment analysis, and document ranking.

Tips:

• The specific attention pattern can be controlled at training and test time using the perm_mask input.

• Due to the difficulty of training a fully auto-regressive model over various factorization order, XLNet is pretrained
using only a sub-set of the output tokens as target which are selected with the target_mapping input.

• To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the perm_mask and
target_mapping inputs to control the attention span and outputs (see examples in examples/pytorch/text-
generation/run_generation.py)

• XLNet is one of the few models that has no sequence length limit.

• XLNet is not a traditional autoregressive model but uses a training strategy that builds on that. It permutes the
tokens in the sentence, then allows the model to use the last n tokens to predict the token n+1. Since this is all
done with a mask, the sentence is actually fed in the model in the right order, but instead of masking the first n
tokens for n+1, XLNet uses a mask that hides the previous tokens in some given permutation of 1,. . . ,sequence
length.

• XLNet also uses the same recurrence mechanism as Transformer-XL to build long-term dependencies.

408 Chapter 2. Documentation

https://arxiv.org/abs/1906.08237


EIR

This model was contributed by thomwolf. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 32000):

Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling XLNetModel or TFXLNetModel.

d_model (int, optional, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.

n_layer (int, optional, defaults to 24):
Number of hidden layers in the Transformer encoder.

n_head (int, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.

d_inner (int, optional, defaults to 4096):
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

ff_activation (str or Callable, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the If string, “gelu”, “relu”, “silu” and
“gelu_new” are supported.

untie_r (bool, optional, defaults to True):
Whether or not to untie relative position biases

attn_type (str, optional, defaults to “bi”):
The attention type used by the model. Set “bi” for XLNet, “uni” for Transformer-XL.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

dropout (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

mem_len (int or None, optional):
The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous
forward pass won’t be re-computed. See the quickstart for more information.

reuse_len (int, optional):
The number of tokens in the current batch to be cached and reused in the future.

bi_data (bool, optional, defaults to False):
Whether or not to use bidirectional input pipeline. Usually set to True during pretraining and False during
finetuning.

clamp_len (int, optional, defaults to -1):
Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping.

same_length (bool, optional, defaults to False):
Whether or not to use the same attention length for each token.

summary_type (str, optional, defaults to “last”):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Has to be one of the following options:

• “last”: Take the last token hidden state (like XLNet).

2.6. API 409

https://huggingface.co/thomwolf
https://github.com/zihangdai/xlnet/
https://huggingface.co/transformers/quickstart.html#using-the-past


EIR

• “first”: Take the first token hidden state (like BERT).

• “mean”: Take the mean of all tokens hidden states.

• “cls_index”: Supply a Tensor of classification token position (like GPT/GPT-2).

• “attn”: Not implemented now, use multi-head attention.

summary_use_proj (bool, optional, defaults to True):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Whether or not to add a projection after the vector extraction.

summary_activation (str, optional):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice
models.

Pass “tanh” for a tanh activation to the output, any other value will result in no activation.

summary_proj_to_labels (boo, optional, defaults to True):
Used in the sequence classification and multiple choice models.

Whether the projection outputs should have config.num_labels or config.hidden_size classes.

summary_last_dropout (float, optional, defaults to 0.1):
Used in the sequence classification and multiple choice models.

The dropout ratio to be used after the projection and activation.

start_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

end_n_top (int, optional, defaults to 5):
Used in the SQuAD evaluation script.

use_mems_eval (bool, optional, defaults to True):
Whether or not the model should make use of the recurrent memory mechanism in evaluation mode.

use_mems_train (bool, optional, defaults to False):
Whether or not the model should make use of the recurrent memory mechanism in train mode.

<Tip>

For pretraining, it is recommended to set use_mems_train to True. For fine-tuning, it is recommended to
set use_mems_train to False as discussed here. If use_mems_train is set to True, one has to make sure that
the train batches are correctly pre-processed, e.g. batch_1 = [[This line is], [This is the]] and batch_2 =
[[ the first line], [ second line]] and that all batches are of equal size.

</Tip>

410 Chapter 2. Documentation

https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587


EIR

class transformers.models.yoso.configuration_yoso.YosoConfig(vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act='gelu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=4096,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-12, posi-
tion_embedding_type='absolute',
use_expectation=True,
hash_code_len=9, num_hash=64,
conv_window=None,
use_fast_hash=True,
lsh_backward=True,
pad_token_id=1, bos_token_id=0,
eos_token_id=2, **kwargs)

The YOSO model was proposed in You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sam-
pling by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. YOSO approx-
imates standard softmax self-attention via a Bernoulli sampling scheme based on Locality Sensitive Hashing (LSH).
In principle, all the Bernoulli random variables can be sampled with a single hash.

The abstract from the paper is the following:

Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model
is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends
quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show
that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic
complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual
tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although
in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention
which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm
on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard
pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences,
our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and
often outperforms other efficient self-attention methods. Our code is available at this https URL

Tips:

• The YOSO attention algorithm is implemented through custom CUDA kernels, functions written in CUDA C++
that can be executed multiple times

in parallel on a GPU. - The kernels provide a fast_hash function, which approximates the random projections of
the queries and keys using the Fast Hadamard Transform. Using these hash codes, the lsh_cumulation function ap-
proximates self-attention via LSH-based Bernoulli sampling. - To use the custom kernels, the user should set con-
fig.use_expectation = False. To ensure that the kernels are compiled successfully, the user must install the correct
version of PyTorch and cudatoolkit. By default, config.use_expectation = True, which uses YOSO-E and does not
require compiling CUDA kernels.

<img src=”https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yoso_architecture.jpg”
alt=”drawing” width=”600”/>

<small> YOSO Attention Algorithm. Taken from the <a href=”https://arxiv.org/abs/2111.09714”>original pa-
per</a>.</small>

2.6. API 411

https://arxiv.org/abs/2111.09714
https://arxiv.org/abs/2111.09714
https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yoso_architecture.jpg
https://arxiv.org/abs/2111.09714


EIR

This model was contributed by novice03. The original code can be found here.

Args:
vocab_size (int, optional, defaults to 50265):

Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling YosoModel.

hidden_size (int, optional, defaults to 768):
Dimension of the encoder layers and the pooler layer.

num_hidden_layers (int, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.

num_attention_heads (int, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.

intermediate_size (int, optional, defaults to 3072):
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

hidden_act (str or function, optional, defaults to “gelu”):
The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”,
“selu” and “gelu_new” are supported.

hidden_dropout_prob (float, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob (float, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.

max_position_embeddings (int, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).

type_vocab_size (int, optional, defaults to 2):
The vocabulary size of the token_type_ids passed when calling YosoModel.

initializer_range (float, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

layer_norm_eps (float, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.

position_embedding_type (str, optional, defaults to “absolute”):
Type of position embedding. Choose one of “absolute”, “relative_key”, “relative_key_query”.

use_expectation (bool, optional, defaults to True):
Whether or not to use YOSO Expectation. Overrides any effect of num_hash.

hash_code_len (int, optional, defaults to 9):
The length of hashes generated by the hash functions.

num_hash (int, optional, defaults to 64):
Number of hash functions used in YosoSelfAttention.

conv_window (int, optional):
Kernel size of depth-wise convolution.

use_fast_hash (bool, optional, defaults to False):
Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.

lsh_backward (bool, optional, defaults to True):
Whether or not to perform backpropagation using Locality Sensitive Hashing.

412 Chapter 2. Documentation

https://huggingface.co/novice03
https://github.com/mlpen/YOSO


EIR

2.7 License

GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for

software and other kinds of works, specifically designed to ensure cooperation with the community in the case of
network server software.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast, our General Public Licenses are intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its
users.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights

with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to
copy, distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that

improvements made in alternate versions of the program, if they receive widespread use, become available for other
developers to incorporate. Many developers of free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail to come about. The GNU General Public
License permits making a modified version and letting the public access it on a server without ever releasing its source
code to the public.

The GNU Affero General Public License is designed specifically to

ensure that, in such cases, the modified source code becomes available to the community. It requires the operator of a
network server to provide the source code of the modified version running there to the users of that server. Therefore,
public use of a modified version, on a publicly accessible server, gives the public access to the source code of the
modified version.

An older license, called the Affero General Public License and

published by Affero, was designed to accomplish similar goals. This is a different license, not a version of the Affero
GPL, but Affero has released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

2.7. License 413

https://fsf.org/


EIR

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright
notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part
of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used
to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, in-
cluding scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities but which are not
part of the work. For example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between those subprograms and other
parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding Source.

414 Chapter 2. Documentation



EIR

The Corresponding Source for a work in source code form is that

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair
use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running
those works, provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all
of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

2.7. License 415



EIR

b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this
License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by a written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in
the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server
at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

416 Chapter 2. Documentation



EIR

from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of pos-
session and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how
the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly documented (and with an implementation available to
the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of
this License; or

2.7. License 417



EIR

b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified ver-
sions of such material be marked in reasonable ways as different from the original version;
or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a
license document contains a further restriction but permits relicensing or conveying under this License, you may add
to a covered work material governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate
your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-
to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept

418 Chapter 2. Documentation



EIR

this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to
do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are
not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation
of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by
some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims
that would be infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the
patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

2.7. License 419



EIR

arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to all recipients of the covered work and
works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may otherwise be available to you under applicable patent
law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the

Program, your modified version must prominently offer all users interacting with it remotely through a computer net-
work (if your version supports such interaction) an opportunity to receive the Corresponding Source of your version by
providing access to the Corresponding Source from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source shall include the Corresponding Source for any
work covered by version 3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed under version 3 of the GNU General Public
License into a single combined work, and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the work with which it is combined will remain governed by version 3
of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU Affero General Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU Affero General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version number of the GNU
Affero General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

420 Chapter 2. Documentation



EIR

versions of the GNU Affero General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should
have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.

2.7. License 421



EIR

You should have received a copy of the GNU Affero General Public License along with this program. If
not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer

network, you should also make sure that it provides a way for users to get its source. For example, if your program is a
web application, its interface could display a “Source” link that leads users to an archive of the code. There are many
ways you could offer source, and different solutions will be better for different programs; see section 13 for the specific
requirements.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply
and follow the GNU AGPL, see <https://www.gnu.org/licenses/>.

2.8 Acknowledgements

This project would not have been possible without the people developing, maintaining and releasing open source
projects online. Therefore, I would like to thank the people that developed the packages this project directly depends
on, those that developed the packages those projects depend on, and so on:

• pandas : Powerful data structures for data analysis, time series, and statistics

• numpy – Travis E. Oliphant et al.: Fundamental package for array computing in Python

• torch – PyTorch Team: Tensors and Dynamic neural networks in Python with strong GPU acceleration

• torchvision – PyTorch Core Team: image and video datasets and models for torch deep learning

• py – holger krekel, Ronny Pfannschmidt, Benjamin Peterson and others: library with cross-python path, ini-
parsing, io, code, log facilities

• matplotlib – John D. Hunter, Michael Droettboom: Python plotting package

• pytorch-ignite – PyTorch-Ignite Team: A lightweight library to help with training neural networks in Py-
Torch.

• tqdm : Fast, Extensible Progress Meter

• sympy – SymPy development team: Computer algebra system (CAS) in Python

• scikit-learn : A set of python modules for machine learning and data mining

• seaborn : Statistical data visualization

• joblib : Lightweight pipelining with Python functions

• tensorboard – Google Inc.: TensorBoard lets you watch Tensors Flow

• ConfigArgParse : A drop-in replacement for argparse that allows options to also be set via config files and/or
environment variables.

• torch-optimizer – Nikolay Novik: pytorch-optimizer

• adabelief-pytorch – Juntang Zhuang: PyTorch implementation of AdaBelief Optimizer

• dill – Mike McKerns: serialize all of Python

• aislib – Arnor Sigurdsson:

• colorama : Cross-platform colored terminal text.

• torchtext – PyTorch Text Team: Text utilities, models, transforms, and datasets for PyTorch.

422 Chapter 2. Documentation

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/


EIR

• transformers – The Hugging Face team (past and future) with the help of all our contributors (https://github.
com/huggingface/transformers/graphs/contributors): State-of-the-art Machine Learning for JAX, PyTorch and
TensorFlow

• sentencepiece – Taku Kudo: SentencePiece python wrapper

• ipython – The IPython Development Team: IPython: Productive Interactive Computing

• timm : PyTorch Image Models

• captum – PyTorch Team: Model interpretability for PyTorch

• deeplake – activeloop.ai: Activeloop Deep Lake

• aioboto3 – Terry Cain: Async boto3 wrapper

• termcolor : ANSI color formatting for output in terminal

• tokenizers – Anthony MOI <m.anthony.moi@gmail.com>:

• pyarrow : Python library for Apache Arrow

• einops – Alex Rogozhnikov: A new flavour of deep learning operations

• umap-learn : Uniform Manifold Approximation and Projection

• fastapi : FastAPI framework, high performance, easy to learn, fast to code, ready for production

• uvicorn : The lightning-fast ASGI server.

• pydantic : Data validation using Python type hints

• tiktoken – Shantanu Jain: tiktoken is a fast BPE tokeniser for use with OpenAI’s models

• memory-profiler – Fabian Pedregosa: A module for monitoring memory usage of a python program

• pytest – Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, Florian
Bruhin, Others (See AUTHORS): pytest: simple powerful testing with Python

• tox : tox is a generic virtualenv management and test command line tool

• flake8 – Tarek Ziade: the modular source code checker: pep8 pyflakes and co

• jupyter – Jupyter Development Team: Jupyter metapackage. Install all the Jupyter components in one go.

• ipykernel : IPython Kernel for Jupyter

• coverage – Ned Batchelder and 225 others: Code coverage measurement for Python

• snakeviz : A web-based viewer for Python profiler output

• pytest-cov – Marc Schlaich: Pytest plugin for measuring coverage.

• pynvim – Neovim Authors: Python client for Neovim

• pre-commit – Anthony Sottile: A framework for managing and maintaining multi-language pre-commit hooks.

• gpustat – Jongwook Choi: An utility to monitor NVIDIA GPU status and usage

• black : The uncompromising code formatter.

• Sphinx : Python documentation generator

• sphinx-rtd-theme – Dave Snider, Read the Docs, Inc. & contributors: Read the Docs theme for Sphinx

• sphinx-copybutton – Executable Book Project: Add a copy button to each of your code cells.

• tomlkit – Sébastien Eustace: Style preserving TOML library

• gdown : Google Drive Public File/Folder Downloader

2.8. Acknowledgements 423

https://github.com/huggingface/transformers/graphs/contributors
https://github.com/huggingface/transformers/graphs/contributors
mailto:m.anthony.moi@gmail.com


EIR

• hypothesis – David R. MacIver and Zac Hatfield-Dodds: A library for property-based testing

• pdf2image – Edouard Belval: A wrapper around the pdftoppm and pdftocairo command line tools to convert
PDF to a PIL Image list.

• vulture – Jendrik Seipp: Find dead code

• mypy – Jukka Lehtosalo: Optional static typing for Python

• types-pyyaml : Typing stubs for PyYAML

• isort – Timothy Crosley: A Python utility / library to sort Python imports.

• pytest-split – Jerry Pussinen: Pytest plugin which splits the test suite to equally sized sub suites based on
test execution time.

424 Chapter 2. Documentation



INDEX

A
ArrayInputDataConfig (class in eir.setup.schemas),

186
ArrayModelConfig (class in

eir.models.input.array.array_models), 189
ArrayOutputModuleConfig (class in

eir.models.output.array.array_output_modules),
205

ArrayOutputSamplingConfig (class in
eir.setup.schema_modules.output_schemas_array),
207

ArrayOutputTypeConfig (class in
eir.setup.schema_modules.output_schemas_array),
203

B
BasicInterpretationConfig (class in

eir.setup.schemas), 189
BasicTransformerFeatureExtractorModelConfig

(class in eir.models.input.sequence.transformer_models),
193

Beit (class in timm.models.beit), 208
ByobNet (class in timm.models.byobnet), 208
ByteInputDataConfig (class in eir.setup.schemas), 185

C
Cait (class in timm.models.cait), 208
CNNModelConfig (class in

eir.models.input.array.models_cnn), 190
CoaT (class in timm.models.coat), 209
ConVit (class in timm.models.convit), 209
ConvMixer (class in timm.models.convmixer), 209
ConvNeXt (class in timm.models.convnext), 209
CrossVit (class in timm.models.crossvit), 209
CspNet (class in timm.models.cspnet), 210

D
DaVit (class in timm.models.davit), 210
DenseNet (class in timm.models.densenet), 210
DLA (class in timm.models.dla), 211
DPN (class in timm.models.dpn), 211

E
EdgeNeXt (class in timm.models.edgenext), 211
EfficientFormer (class in

timm.models.efficientformer), 211
EfficientNet (class in timm.models.efficientnet), 211
EfficientVit (class in timm.models.efficientvit_mit),

212
EfficientVitMsra (class in

timm.models.efficientvit_msra), 212
Eva (class in timm.models.eva), 212

F
FocalNet (class in timm.models.focalnet), 212
forward_train() (timm.models.volo.VOLO method),

226
FusionConfig (class in eir.setup.schemas), 200

G
get_classifier() (timm.models.swin_transformer_v2_cr.SwinTransformerV2Cr

method), 221
get_intermediate_layers()

(timm.models.vision_transformer.VisionTransformer
method), 223

GhostNet (class in timm.models.ghostnet), 213
GlobalConfig (class in eir.setup.schemas), 179
GlobalContextVit (class in timm.models.gcvit), 213

H
HighPerfGpuNet (class in timm.models.hgnet), 213
HighResolutionNet (class in timm.models.hrnet), 213

I
IdentityConfig (class in

eir.models.fusion.fusion_identity), 200
IdentityModelConfig (class in

eir.models.input.array.models_identity), 191
ImageInputDataConfig (class in eir.setup.schemas),

186
ImageModelConfig (class in

eir.models.input.image.image_models), 188
InceptionResnetV2 (class in

timm.models.inception_resnet_v2), 213

425



EIR

InceptionV3 (class in timm.models.inception_v3), 213
InceptionV4 (class in timm.models.inception_v4), 213
InputConfig (class in eir.setup.schemas), 182
InputDataConfig (class in eir.setup.schemas), 183

L
LCLModelConfig (class in

eir.models.input.array.models_locally_connected),
192

Levit (class in timm.models.levit), 213
LinearModelConfig (class in

eir.models.input.array.models_linear), 193
LinearOutputModuleConfig (class in

eir.models.output.tabular.linear), 204

M
MaxxVitCfg (class in timm.models.maxxvit), 214
MetaFormer (class in timm.models.metaformer), 214
MGMoEModelConfig (class in

eir.models.fusion.fusion_mgmoe), 200
MobileNetV3 (class in timm.models.mobilenetv3), 215
MultiScaleVit (class in timm.models.mvitv2), 215

N
NASNetALarge (class in timm.models.nasnet), 215
Nest (class in timm.models.nest), 216
NormFreeNet (class in timm.models.nfnet), 216

O
OmicsInputDataConfig (class in eir.setup.schemas),

183
OmicsModelConfig (class in

eir.models.input.omics.omics_models), 187
OutputConfig (class in eir.setup.schemas), 201
OutputInfoConfig (class in eir.setup.schemas), 201

P
PNASNet5Large (class in timm.models.pnasnet), 216
PoolingVisionTransformer (class in

timm.models.pit), 216
PyramidVisionTransformerV2 (class in

timm.models.pvt_v2), 217

R
RegNet (class in timm.models.regnet), 217
RepGhostNet (class in timm.models.repghost), 217
RepVit (class in timm.models.repvit), 217
reset_classifier() (timm.models.swin_transformer_v2_cr.SwinTransformerV2Cr

method), 221
ResidualMLPConfig (class in

eir.models.fusion.fusion_default), 200
ResidualMLPOutputModuleConfig (class in

eir.models.output.tabular.mlp_residual),
204

ResNet (class in timm.models.resnet), 217
ResNetV2 (class in timm.models.resnetv2), 218
RexNet (class in timm.models.rexnet), 218

S
SelecSls (class in timm.models.selecsls), 218
SENet (class in timm.models.senet), 218
SequenceInputDataConfig (class in

eir.setup.schemas), 184
SequenceModelConfig (class in

eir.models.input.sequence.transformer_models),
187

SequenceOutputModuleConfig (class in
eir.models.output.sequence.sequence_output_modules),
204

SequenceOutputSamplingConfig (class in
eir.setup.schema_modules.output_schemas_sequence),
206

SequenceOutputTypeConfig (class in
eir.setup.schema_modules.output_schemas_sequence),
202

Sequencer2d (class in timm.models.sequencer), 219
SimpleLCLModelConfig (class in

eir.models.input.array.models_locally_connected),
191

SimpleTabularModelConfig (class in
eir.models.input.tabular.tabular), 193

SwinTransformer (class in
timm.models.swin_transformer), 219

SwinTransformerV2 (class in
timm.models.swin_transformer_v2), 219

SwinTransformerV2Cr (class in
timm.models.swin_transformer_v2_cr), 220

T
TabularInputDataConfig (class in eir.setup.schemas),

184
TabularModelConfig (class in

eir.models.input.tabular.tabular), 187
TabularOutputModuleConfig (class in

eir.models.output.tabular.tabular_output_modules),
203

TabularOutputTypeConfig (class in
eir.setup.schemas), 201

TinyVit (class in timm.models.tiny_vit), 221
TNT (class in timm.models.tnt), 221
transformers.models.albert.configuration_albert.AlbertConfig

(built-in class), 228
transformers.models.bart.configuration_bart.BartConfig

(built-in class), 230
transformers.models.bert.configuration_bert.BertConfig

(built-in class), 232
transformers.models.bert_generation.configuration_bert_generation.BertGenerationConfig

(built-in class), 234

426 Index



EIR

transformers.models.big_bird.configuration_big_bird.BigBirdConfig
(built-in class), 235

transformers.models.bigbird_pegasus.configuration_bigbird_pegasus.BigBirdPegasusConfig
(built-in class), 238

transformers.models.biogpt.configuration_biogpt.BioGptConfig
(built-in class), 241

transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig
(built-in class), 243

transformers.models.blenderbot_small.configuration_blenderbot_small.BlenderbotSmallConfig
(built-in class), 246

transformers.models.bloom.configuration_bloom.BloomConfig
(built-in class), 248

transformers.models.camembert.configuration_camembert.CamembertConfig
(built-in class), 249

transformers.models.codegen.configuration_codegen.CodeGenConfig
(built-in class), 255

transformers.models.cohere.configuration_cohere.CohereConfig
(built-in class), 257

transformers.models.ctrl.configuration_ctrl.CTRLConfig
(built-in class), 259

transformers.models.data2vec.configuration_data2vec_text.Data2VecTextConfig
(built-in class), 261

transformers.models.deberta.configuration_deberta.DebertaConfig
(built-in class), 262

transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2Config
(built-in class), 264

transformers.models.distilbert.configuration_distilbert.DistilBertConfig
(built-in class), 267

transformers.models.electra.configuration_electra.ElectraConfig
(built-in class), 268

transformers.models.ernie.configuration_ernie.ErnieConfig
(built-in class), 271

transformers.models.falcon.configuration_falcon.FalconConfig
(built-in class), 273

transformers.models.flaubert.configuration_flaubert.FlaubertConfig
(built-in class), 275

transformers.models.fnet.configuration_fnet.FNetConfig
(built-in class), 278

transformers.models.gemma.configuration_gemma.GemmaConfig
(built-in class), 279

transformers.models.git.configuration_git.GitConfig
(built-in class), 282

transformers.models.gpt2.configuration_gpt2.GPT2Config
(built-in class), 283, 284

transformers.models.gpt_bigcode.configuration_gpt_bigcode.GPTBigCodeConfig
(built-in class), 287

transformers.models.gpt_neox.configuration_gpt_neox.GPTNeoXConfig
(built-in class), 289

transformers.models.gpt_neox_japanese.configuration_gpt_neox_japanese.GPTNeoXJapaneseConfig
(built-in class), 291

transformers.models.gptj.configuration_gptj.GPTJConfig
(built-in class), 292

transformers.models.ibert.configuration_ibert.IBertConfig
(built-in class), 294

transformers.models.imagegpt.configuration_imagegpt.ImageGPTConfig
(built-in class), 295

transformers.models.layoutlm.configuration_layoutlm.LayoutLMConfig
(built-in class), 298

transformers.models.led.configuration_led.LEDConfig
(built-in class), 300

transformers.models.llama.configuration_llama.LlamaConfig
(built-in class), 251, 302

transformers.models.longformer.configuration_longformer.LongformerConfig
(built-in class), 305

transformers.models.longt5.configuration_longt5.LongT5Config
(built-in class), 307

transformers.models.luke.configuration_luke.LukeConfig
(built-in class), 309

transformers.models.m2m_100.configuration_m2m_100.M2M100Config
(built-in class), 311

transformers.models.mamba.configuration_mamba.MambaConfig
(built-in class), 313

transformers.models.marian.configuration_marian.MarianConfig
(built-in class), 315

transformers.models.markuplm.configuration_markuplm.MarkupLMConfig
(built-in class), 316

transformers.models.mbart.configuration_mbart.MBartConfig
(built-in class), 319

transformers.models.mega.configuration_mega.MegaConfig
(built-in class), 320

transformers.models.megatron_bert.configuration_megatron_bert.MegatronBertConfig
(built-in class), 324

transformers.models.mixtral.configuration_mixtral.MixtralConfig
(built-in class), 326

transformers.models.mobilebert.configuration_mobilebert.MobileBertConfig
(built-in class), 329

transformers.models.mpnet.configuration_mpnet.MPNetConfig
(built-in class), 331

transformers.models.mpt.configuration_mpt.MptConfig
(built-in class), 332

transformers.models.mra.configuration_mra.MraConfig
(built-in class), 334

transformers.models.mvp.configuration_mvp.MvpConfig
(built-in class), 336

transformers.models.nezha.configuration_nezha.NezhaConfig
(built-in class), 338

transformers.models.nllb_moe.configuration_nllb_moe.NllbMoeConfig
(built-in class), 339

transformers.models.nystromformer.configuration_nystromformer.NystromformerConfig
(built-in class), 343

transformers.models.openai.configuration_openai.OpenAIGPTConfig
(built-in class), 345

transformers.models.opt.configuration_opt.OPTConfig
(built-in class), 347

transformers.models.pegasus.configuration_pegasus.PegasusConfig
(built-in class), 348

transformers.models.pegasus_x.configuration_pegasus_x.PegasusXConfig
(built-in class), 350

Index 427



EIR

transformers.models.persimmon.configuration_persimmon.PersimmonConfig
(built-in class), 353

transformers.models.phi.configuration_phi.PhiConfig
(built-in class), 355

transformers.models.plbart.configuration_plbart.PLBartConfig
(built-in class), 357

transformers.models.prophetnet.configuration_prophetnet.ProphetNetConfig
(built-in class), 359

transformers.models.qwen2.configuration_qwen2.Qwen2Config
(built-in class), 362

transformers.models.reformer.configuration_reformer.ReformerConfig
(built-in class), 364

transformers.models.rembert.configuration_rembert.RemBertConfig
(built-in class), 368

transformers.models.roberta.configuration_roberta.RobertaConfig
(built-in class), 370

transformers.models.roberta_prelayernorm.configuration_roberta_prelayernorm.RobertaPreLayerNormConfig
(built-in class), 372

transformers.models.roc_bert.configuration_roc_bert.RoCBertConfig
(built-in class), 374

transformers.models.roformer.configuration_roformer.RoFormerConfig
(built-in class), 377

transformers.models.rwkv.configuration_rwkv.RwkvConfig
(built-in class), 378

transformers.models.splinter.configuration_splinter.SplinterConfig
(built-in class), 380

transformers.models.squeezebert.configuration_squeezebert.SqueezeBertConfig
(built-in class), 381

transformers.models.stablelm.configuration_stablelm.StableLmConfig
(built-in class), 384

transformers.models.starcoder2.configuration_starcoder2.Starcoder2Config
(built-in class), 385

transformers.models.switch_transformers.configuration_switch_transformers.SwitchTransformersConfig
(built-in class), 388

transformers.models.t5.configuration_t5.T5Config
(built-in class), 391

transformers.models.visual_bert.configuration_visual_bert.VisualBertConfig
(built-in class), 393

transformers.models.xglm.configuration_xglm.XGLMConfig
(built-in class), 395

transformers.models.xlm.configuration_xlm.XLMConfig
(built-in class), 397

transformers.models.xlm_prophetnet.configuration_xlm_prophetnet.XLMProphetNetConfig
(built-in class), 400

transformers.models.xlm_roberta.configuration_xlm_roberta.XLMRobertaConfig
(built-in class), 403

transformers.models.xlm_roberta_xl.configuration_xlm_roberta_xl.XLMRobertaXLConfig
(built-in class), 405

transformers.models.xlnet.configuration_xlnet.XLNetConfig
(built-in class), 407

transformers.models.yoso.configuration_yoso.YosoConfig
(built-in class), 410

TResNet (class in timm.models.tresnet), 221
Twins (class in timm.models.twins), 221

U
update_input_size()

(timm.models.swin_transformer_v2_cr.SwinTransformerV2Cr
method), 221

V
VGG (class in timm.models.vgg), 222
Visformer (class in timm.models.visformer), 222
VisionTransformer (class in

timm.models.vision_transformer), 222
VisionTransformerDistilled (class in

timm.models.deit), 210
VisionTransformerRelPos (class in

timm.models.vision_transformer_relpos),
223

VisionTransformerSAM (class in
timm.models.vision_transformer_sam), 225

VOLO (class in timm.models.volo), 225
VovNet (class in timm.models.vovnet), 226

X
Xception (class in timm.models.xception), 226
XceptionAligned (class in

timm.models.xception_aligned), 226
Xcit (class in timm.models.xcit), 226

428 Index


	Installation
	Installing EIR via pip
	Installing EIR via Container Engine

	Documentation
	Supervised Learning
	01 – Genotype Tutorial: Ancestry Prediction
	A - Setup
	B - Training
	Training a GLN model

	C - Predicting on external samples
	Predicting on samples with known labels
	Predicting on samples with unknown labels

	D - Applying to your own data (e.g. UK Biobank)
	E - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	02 – Tabular Tutorial: Nonlinear Poker Hands
	A - Setup
	B - Training
	C - Predicting on test set
	E - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	03 – Sequence Tutorial: Movie Reviews and Peptides
	A - IMDB Reviews
	A1 - IMDB Setup
	A2 - IMDB Training
	A3 - IMDB Interpretation

	B - Anticancer Peptides
	B1 - Anticancer Peptides Setup
	B1 - Anticancer Peptides Training

	E - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	04 – Established Architectures and Pretrained Models
	A - Baseline
	B - Local Transformer
	C - Established architecture: Longformer
	D - Pretrained Model: Tiny BERT
	E - Combining Models
	F - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	05 – Image Tutorial: Hot Dog or Not?
	A - Baseline
	B - Pretrained Image Model
	C - Combining pretrained image models
	D - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	06 – Training on binary data
	A - Local Transformer
	B - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	07 – Multimodal Training: Combining Tabular, Text, and Image
	A - Tabular Data
	B - Tabular + Text Data
	C - Tabular + Text + Image Data
	D - Serving
	Starting the Web Service
	Preparing and Sending Requests
	Analyzing Responses

	Appendix A - Adding a pre-trained text feature extractor
	Appendix B - Multi-modal, multi-task learning

	08 – Training on arrays with CNN, LCL, and Transformer Models
	A - Data
	B - Training
	C - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses




	Sequence Generation
	01 – Sequence Generation: Generating Movie Reviews
	A - Data
	B - Training
	C - Prediction: Creating new sequences with a trained model
	E - Sequence Generation with BPE Tokenization
	F - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	02 - Sequence to Sequence: Spanish to English Translation
	A - Data
	B - Training
	C - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	03 - Image to Sequence: Image Captioning
	A - Data
	B - Training
	D - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses


	04 - Tabular to Sequence: Protein Sequence Generation
	A - Data
	B - Unconditional Protein Sequence Generation
	C - Conditional Protein Sequence Generation
	D - Generating New Sequences of a Specific Protein Type
	F - Serving
	Starting the Web Service
	Sending Requests
	Analyzing Responses



	Array Generation
	01 – Array Output: Building a Simple Autoencoder for MNIST Digit Generation
	A - Data
	B - Training A Simple Autoencoder
	C - Augmenting Our Autoencoder With More Data
	D - Serving
	Starting the Web Service
	Sending Requests
	Retrieving Array Information
	Decoding and Processing the Response
	Analyzing Responses



	Pretraining
	01 – Pretraining, Checkpointing and Continued Training
	A - Data
	B - Training a Model From Scratch
	C - Continuing Training from a Checkpoint
	D - Partial Loading of Matching Layers

	02 - Creating and Using a Mini Foundation Model
	A - Data
	B - Training a Mini Foundation Model
	C - Establishing an IMDB Baseline
	D - Using the Mini Foundation Model for IMDB
	E - Establishing a CIFAR10 Baseline
	F - Using the Mini Foundation Model for CIFAR10


	Customizing EIR
	01 – Customizing EIR: Customized Fusion Tutorial
	A - Setup
	B - Writing a custom fusion module
	C - Running the custom fusion module
	D - Full Code


	API
	Configuration API
	Global Configurations
	Input Configurations
	Input Data Configuration
	Input Type Configurations
	Input Model Configurations
	Interpretation Configurations

	Feature Extractor Configurations
	Omics Feature Extractors
	Tabular Feature Extractors
	Sequence and Binary Feature Extractors
	Image Feature Extractors
	Array Feature Extractors

	Fusion Configurations
	Fusion Module Configuration

	Output Configurations
	Output Info Configuration
	Output Type Configuration
	Output Module Configuration
	Output Sampling Configuration


	Image Models
	Configurable Models

	Sequence Models
	Configurable Models


	License
	Acknowledgements

	Index

